Skip to main content

Biologische Strahlenwirkungen

  • Chapter
Handbuch diagnostische Radiologie

Zusammenfassung

In allen lebenden Organismen von einfachen Bakterien bis zu Säugerzellen hat sich die Fähigkeit entwickelt, DNA-Schäden zu erkennen und zu reparieren (Übersicht bei Friedberg et al. 1995). Diese Schäden können nicht nur durch externe Einflüsse wie Röntgen-, UV-Bestrahlung und Einwirkung von Chemikalien, sondern in groβem Umfang auch durch endogene Prozesse entstehen. V.a. durch den oxidativen Metabolismus werden in jeder Zelle täglich viele tausend DNA-Schäden erzeugt. Die Fähigkeit einer Zelle, DNA-Schäden zu erkennen und zu beseitigen, ist somit eine wesentliche Voraussetzung für die Stabilität des Genoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Altman KI, Gerber GB, Okada S (1970) Radiation biochemistry. Academic Press, New York

    Google Scholar 

  • Awa AA, Sofuni T, Honda T et al. (1978) Relationship between the radiation dose and chromosome aberrations in atomic bomb survivors of Hiroshima and Nagasaki. J Radiat Res 1: 126–140

    Article  Google Scholar 

  • Awa AA (1990) Chromosome aberrations in A-bomb survivors, Hiroshima and Nagasaki. In: Obe G, Natarajan AT (eds) Chromosomal Aberrations, Basic and Applied Aspects. Springer, Berlin Heidelberg New York, pp 130–150

    Google Scholar 

  • Barendsen GW (1968) Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer. In: Ebert M, Howard A (eds) Current topics in radiation research, vol IV. North-Holland, Amsterdam, pp 293–356

    Google Scholar 

  • Barendsen GW, Koot CJ, Kersen GR van, Bewley DK, Field SB, Parnell CJ (1966) The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol 10: 317–327

    Article  CAS  Google Scholar 

  • Bauchinger M (1995a) Cytogenetic research after accidental radiation exposure. Stem Cells 13(suppl 1): 182–190

    PubMed  Google Scholar 

  • Bauchinger M (1995b) Quantification of low-level radiation exposures by conventional chromosome aberration analysis. Mutat Res 339: 177–189

    Article  PubMed  CAS  Google Scholar 

  • Bauchinger M (1998c) Retrospective dose reconstruction of human radiation exposure by FISH/chromosome painting. Mutat Res 404: 89–96

    Article  PubMed  CAS  Google Scholar 

  • Bauchinger M, Schmid E (1998) LET dependence of yield ratios of radiation-induced intra-and interchromosomal aberrations in human lymphocytes. Int J Radiat Biol 74: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Becker N, Wahrendorf J (1998) Krebsatlas der Bundesrepublik Deutschland 1981-1990.3. Aufl. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Beckmann DA, Solomon HM, Buck SJ Gorson RO, Mills RE, Brent L (1994) Effects of Dose and Dose Protraction on Embryotoxicity of 14.1 MeV Neutron Irradiation in Rats. Radiation Res 138: 337–242

    Article  Google Scholar 

  • BEIR (1972) The BEIR 1972 Report. Nat Acad Sci Washington, DC

    Google Scholar 

  • BEIR (1990) Committee on the Biological Effects of Ionizing Radiations, National Research Council: Health Effects of Exposure to Low Levels of Ionizing Radiations (BEIR V). National Academy, Washington

    Google Scholar 

  • Bender MA, Gooch PC (1962) Types and rates of X-rayinduced chromosome aberrations in human blood irradiated in vitro. Proc Natl Acad Sci (USA) 48: 522–532

    Article  CAS  Google Scholar 

  • Bender MA, Awa AA, Brooks AL et al. (1988) Current status of cytogenetic procedures to detect and quantify previous exposures to radiation. Mutat Res 196: 103–159

    Article  PubMed  CAS  Google Scholar 

  • Bernhard EJ, Maity A, Muschel RJ, McKenna WG (1995) Effects of ionizing radiation on cell cycle progression. Radiation Environ Biophys 34: 79–83

    Article  CAS  Google Scholar 

  • Blot W-J, Miller RW (1973) Mental retardation following in utero exposure to the atomic bombs of Hiroshima and Nagasaki. Radiology 106: 617–620

    PubMed  CAS  Google Scholar 

  • Brent RL (1980) Radiation teratogenesis. Teratology 21: 281–298

    Article  PubMed  CAS  Google Scholar 

  • BMU (1999) Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Umweltradioaktivität und Strahlenbelastung. Jahresbericht 1998. Bonn

    Google Scholar 

  • Boice jr JD, Miller RW (1999) Childhood and Adult Cancer After Intrauterine Exposure to Ionizing Radiation. Teratology 59: 227–33

    Article  PubMed  CAS  Google Scholar 

  • Boice JD, Preston D, Davis FG, Monson RR (1991) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125: 214–222

    Article  PubMed  Google Scholar 

  • Brandiff B, Gordon LA, Moore D, Carrano AV (1988) An analysis of structural aberrations in human sperm chromosomes. Cytogen Cell Genet 47: 29–36

    Article  Google Scholar 

  • Brenner DJ, Sachs RK (1994) Chromosomal „fingerprint“ of prior exposure to densely-ionizing radiation. Radiat Res 140: 134–142

    Article  PubMed  CAS  Google Scholar 

  • Bundesärztekammer (1995) Leitlinien der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik. Qualitätskriterien röntgendiagnostischer Untersuchungen. Dt Ärztebl 92 B: 1691–1703

    Google Scholar 

  • Carrel A (1912) On the permanent live of tissues outside of the organisms. J Exp Med 15: 516–528

    Article  PubMed  CAS  Google Scholar 

  • Carter CO (1977) Monogenic disorders. J Med Gen 14: 316–320

    Article  CAS  Google Scholar 

  • Chadwick KH, Leenhouts (1981) The Molecular Theory of Radiation Biology. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Chakraborty R, Yasuda N, Denniston C, Sankaranarayanan K (1998) Ionizing radiation and genetic risks VII. The concept of mutation component and its use in risk estimation for Mendelian diseases. Mutat Res 400: 541–552

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kurz A, Zirbel R et al. (1993) Role of chromosome territories in functional compartmentalization of the cell nucleus. Cold Spring Harbor Symposion on Quantitative Biology 58: 777–792

    Article  CAS  Google Scholar 

  • Dekaban AS (1969) Differential vulnerability to irradiation of various cerebral structures during prenatal development. In: Radiation biology of the fetal and juvenile mammal. USAEC Division of Technical Information Oak Ridge, pp 769–777

    Google Scholar 

  • Delongchamp RR, Mabuchi K, Yoshimoto Y, Preston L (1997) Cancer Mortality among Atomic Bomb Survivors Exposed In Utero or as Young Children, October 1950 — May 1992. Radiation Research 147: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Dikomey E, Franzke J (1986) Three classes of DNA strand breaks induced by X-irradiation and internal β-rays. Int J Radiation Biol 50: 893–908

    Article  CAS  Google Scholar 

  • Dikomey E, Brammer I (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal human fibroblast line. Int J Radiation Biol 76: 773–781

    Article  CAS  Google Scholar 

  • Dittmann KH, Güven N, Mayer C, Rodemann HP (1995) Radiation-induced apoptosis of normal cells is inhibited by Bowman-Birk proteinase inhibitor. 10th International Congress of Radiation Research, Würzburg, Radiat Res, Congress Proc 2: 673–675

    Google Scholar 

  • Doll R, Wakeford R (1997) Risk of childhood cancer from fetal irradiation. Br J Radiol 70: 130–139

    PubMed  CAS  Google Scholar 

  • Dunst J, Sauer R (1995) Late Sequelae in Oncology. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Edwards AA (1997) The use of chromosomal aberrations in human lymphocytes for biological dosimetry. Radiat Res 148: 39–44

    Article  Google Scholar 

  • Eng C, Li FP, Abrahamson DH et al. (1993) Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst. 85: 1121–1128

    Article  PubMed  CAS  Google Scholar 

  • EUR (1996) Guidance on Diagnostic Reference Levels (DRLs) for Medical Exposures. European Commission, Brussels

    Google Scholar 

  • Ewen K, Fiebach BJO, Lauber-Altmann I (1988) Zur Durchführung der Belehrung nach Paragraph 36 Röntgenverordnung, 2. Aufl. Thieme, Stuttgart New York

    Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  PubMed  CAS  Google Scholar 

  • Flaskamp W (1930) Über Röntgenschäden und Schäden durch radioaktive Substanzen. Ihre Symptome, Ursachen, Vermeidung und Behandlung. Urban und Schwarzenberg, Berlin Wien

    Google Scholar 

  • Föhe C, Dikomey E (1994) Induction and repair of X-rayinduced DNA base damage studied in CHO cells using the M. luteus extract. Int J Radiation Biol 66: 697–704

    Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy — a review. Br J Radiol 62: 679–694

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg-Schwager M (1989) Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation. Radiother Oncol 14: 307–320

    Article  PubMed  CAS  Google Scholar 

  • Friedberg W, Faulkner DN, Neas BR, Darden jr EB, Parker DE, Hanneman GD (1998) Prenatal survival of mouse embryos irradiated in utero with fission neutrons or 250 kV x-rays during the two-cell stage of development. Int J Radiat Biol 73: 233–239

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA Repair and Mutagenesis. ASM, Washington

    Google Scholar 

  • Fritz-Niggli H (1991) Strahlengefährdung/Strahlenschutz, 3. Aufl. Huber, Bern Stuttgart Toronto

    Google Scholar 

  • Fuks Z, Weichselbaum RR (1995) Radiation therapy. In: Mendelsohn J, Howley PM, Israel MA, Liotta LA (eds) Molecular basis of cancer. Saunders, Philadelphia

    Google Scholar 

  • Generoso WN, Rutlegde JC, Cain KT, Hughes LA, Braden PW (1987) Exposure of female mice to ethylene oxide within hours after mating leads to fetal malformations and death. Mutation Res 176: 269–274

    Article  PubMed  CAS  Google Scholar 

  • Griffin CS, Hill DG, Papworth KMS et al. (1998) Effectiveness of 0.28 keV Carbon ultrasoft X-rays at producing simple and complex exchanges in human fibroblasts in vitro detected using FISH. Int J Radiat Biol 73: 591–598

    Article  PubMed  CAS  Google Scholar 

  • Grosse-Wilde H, Schäfer UW (1991) Lymphatic system. In: Scherer E., Streffer C, Trott KR (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hahn GM, Bagshaw MA (1966) Serum concentration: effects on cycle and X-ray sensitivity of mammalian cells. Science 151: 459–461

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (1994) Radiobiology for the Radiobiologist. Lippincott, Philadelphia

    Google Scholar 

  • Harnett AN, Hungerford, JL (1991) Ocular morbidity in radiotherapy. In: Plowman PN, McElwain TJ, Meadows AT (eds) Complications of Cancer Management. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Herrmann T, Baumann MK (1997) (Hrsg) Klinische Strahlenbiologie — kurz und bündig. 3. Aufl. Fischer, Jena Stuttgart Lübeck Ulm

    Google Scholar 

  • Hillebrandt S, Streffer C (1994) Protein patterns in tissues of fetuses with radiation-induced gastroschisis. Mutation Res 308: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Hillebrandt S, Streffer C, Montagutelli X, Balling R (1998) A locus for radiation-induced gastroschisis on mouse chromosome 7. Mammalian Genome 9: 995–997

    Article  PubMed  CAS  Google Scholar 

  • Hippel von E, Pagenstecher H (1907) Über den Einfluß des Cholins und der Röntgenstrahlen auf den Ablauf der Gravidität. MMW 10: 452

    Google Scholar 

  • Howard A, Pelc SR (1953) Synthesis of DNA in normal and irradiated cells and its relation to chromosome breakage. Heredity 6: 261–273

    CAS  Google Scholar 

  • IAEA (1986) International Atomic Energy Agency. Summary Report on Post-Accident. Review Meeting on the Chernobyl Accident. Safety Series, no. 75-INSAG-1 IAEA

    Google Scholar 

  • ICRP (1977) Recommendations of the International Commission on Radiological Protection. ICRP Publication 26; Pergamon, Oxford New York Frankfurt

    Google Scholar 

  • ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Pergamon, Oxford (Deutsche Übersetzung: Empfehlungen der Internationalen Strahlenschutzkommission 1990. Fischer, Jena Stuttgart Lübeck Ulm 1993)

    Google Scholar 

  • ICRP (1998) Genetic Susceptibility to Cancer. ICRP Publication 79. Pergamon, Oxford

    Google Scholar 

  • Jacobi W (1991) Die neuen Empfehlungen der Internationalen Kommission für Strahlenschutz (ICRP). Nuklear Medizin 30: 212–219

    Google Scholar 

  • Jacobs PA, Brown C, Gregson N, Joyce C, White H (1992) Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet 29: 103–108

    Article  PubMed  CAS  Google Scholar 

  • Jeggo PA (1985) X-ray sensitive mutants of Chinese hamster ovary cell line: radiosensitivity of DNA synthesis. Mut Res 145: 171–176

    Article  CAS  Google Scholar 

  • Joiner MC (1994) Induced radioresistance: an overview and historical perspective. Int J Radiation Biol 65: 79–84

    Article  CAS  Google Scholar 

  • Jung H (1985) 2. Biologische Wirkung dicht ionisierender Teilchenstrahlen. In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zuppinger A (Hrsg) Handbuch der medizinischen Radiologie, Band XX. Strahlengefährdung und Strahlenschutz. Springer, Berlin Heidelberg New York Tokyo, S 41–68

    Google Scholar 

  • Jung H (1991) Die Risiken der Röntgendiagnostik. Röntgenstrahlen 66: 46–53

    Google Scholar 

  • Jung H (1995) Strahlenrisiko. Fortschr Röntgenstr 162: 91–98

    Article  CAS  Google Scholar 

  • Jung H (1998) Strahlenrisiken. In: Ewen K (Hrsg) Moderne Bildgebung. Thieme, Stuttgart New York, S 24–44

    Google Scholar 

  • Kasten U, Tastan H, Dikomey E (submitted) Correlation between cellular radiosensitivity and non-repaired doublestrand breaks studied for genetic defective human fibroblast lines. Int J Radiation Biol

    Google Scholar 

  • Kemp CJ, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genet 8: 66–69

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87: 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386: 761–763

    Article  PubMed  CAS  Google Scholar 

  • Klot von (1911) Die Unterbrechung der Schwangerschaft durch Röntgenstrahlen. Med. Inaugural-Dissertation, Universität München

    Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823

    Article  PubMed  Google Scholar 

  • Konermann G (1976) Periodische Kompensationsreaktionen im Verlauf des postnatalen Wachstums von der Leber der Maus nach fraktionierter Röntgenbestrahlung während der Embryogenese. Strahlentherapie 152: 550–576

    PubMed  CAS  Google Scholar 

  • Konermann G (1977) Periodische Kompensationsreaktionen im Verlaufe des postnatalen Wachstums von dem Gehirn der Maus nach fraktionierter Röntgenbestrahlung während der Embryogenese. Strahlentherapie 153: 399–414

    PubMed  CAS  Google Scholar 

  • Konermann G (1987) Postimplantation defects in development following ionizing radiation. In: Lett JT (ed) Advances in radiation biology. Academic Press, San Diego New York Berkeley, pp 91–167

    Google Scholar 

  • Le XC, Xing JZ, Lee J, Leadon SA, Weinfeld M (1998) Inducible repair of thymine glycol detected by an ultrasensitive assay for DNA damage. Science 280: 1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Lea DE (1946) Actions of Radiation on Living Cells. 1st edn. Cambridge University Press

    Google Scholar 

  • Leadon SA, Cooper PK (1993) Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc Natl Acad Sci 90: 10499–10503

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1995) The p53 tumour suppressor gene. Helix 2: 18–25

    Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Lukacsovich T, Waldman AS (1999) Multiple pathways for repair of DNA-double-strand breaks in mammalian chromosomes. Mol Cell Biol 19: 8353–8360

    PubMed  CAS  Google Scholar 

  • Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DC, Purrott RJ, Dolphin GW et al. (1976) Chromosome aberrations induced in human lymphocytes by neutron irradiation. Int J Radiat Biol 29: 169–182

    Article  CAS  Google Scholar 

  • Lloyd DC (1997) Chromosomal analysis to assess radiation dose. Stem Cell 15[Suppl 2]: 195–201

    Google Scholar 

  • Löbrich M, Rydberg B, Cooper PK (1995) Repair of X-rayinduced DNA double-strand breaks in specific NotI restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci 92: 12050–12054

    Article  PubMed  Google Scholar 

  • Martin RH, Balkan W, Burns K, Rademaker AW, Lin CC, Rudd NL (1983) The chromosome constitution of 1000 human spermatozoa. Human Genetics 63: 305–309

    Article  PubMed  CAS  Google Scholar 

  • Martin RH, Ko E, Rademaker A (1991) Distribution of aneuploidy in human gametes: comparison between human sperm and oocytes. Am J Med Genet 39: 321–331

    Article  PubMed  CAS  Google Scholar 

  • Michel C, Blattman H, Cordt-Riehle I, Fritz-Niggli H (1979) Low dose effects of x-rays and negative pions on the pronuclear zygote stage of mouse embryos. Radiat Environ Biophys 16: 299–302

    Article  PubMed  CAS  Google Scholar 

  • Mole RH (1974) Antenatal irradiation and childhood cancer: causation or coincidence? Br J Cancer 30: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Mole RH (1992) Expectation of malformations after irradiation of the developing in human utero: The experimental basis for predictions. Adv Radiat Biol 15: 217–301

    Google Scholar 

  • Morgan SE, Kastan MB (1997) p53 and ATM: cell cycle, cell death and cancer. Adv Cancer Res 71: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Moorhead PS, Nowell PC, Mellmann WJ et al. (1960) Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res 20: 613–616

    Article  PubMed  CAS  Google Scholar 

  • Müller W-U, Streffer C (1990) Lethal and teratogenic effects after exposure to X-rays at various times of early murine gestation. Teratology 42: 643–650

    Article  PubMed  Google Scholar 

  • Neel JV, Schull WJ, Awa AA, Satho C, Kato H, Otake M, Yoshimoto Y (1990) The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. Am J Hum Genet 46: 1053–1072

    PubMed  CAS  Google Scholar 

  • Nielsen J, Wohlert M, Faaborg-Andersen J, Eriksen G, Hansen KB, Hvidman L, Krag-Olsen B, Moulvard I, Videbech P (1986) Chromosome examination of 20222 newborn children. Results from a 7.5 year study in Aarhus, Denmark. Bd Oas 22: 209–219

    CAS  Google Scholar 

  • Nothdurft W (1991) Bone Marrow. In: Scherer E, Streffer C, Trott KR (eds) Radiopathology of Organs and Tissues. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194: 23–28

    Article  PubMed  CAS  Google Scholar 

  • NRPB (1993) National Radiological Protection Board: Estimates of Late Radiation Risks to the UK Population. NRPB Document Vol 4, No 4. Chilton

    Google Scholar 

  • Otake M, Yoshimaru H, Schull WJ (1987) Severe mental retardation among the prenatally exposed survivors of the atomic bombing of Hiroshima and Nagasaki. A comparison of T65DR and DS 86 dosimetry systems. R.E.R.F. TR

    Google Scholar 

  • Otake M, Schull WJ, Lee S (1996) Threshold for radiationrelated severe mental retardation in prenatally exposed A-bomb survivors: a re-analysis. Int J Radiat Biol 70: 755–763

    Article  PubMed  CAS  Google Scholar 

  • Otake M, Schull WJ (1998) Review: Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol 74: 159–171

    Article  PubMed  CAS  Google Scholar 

  • Pampfer S, Streffer C (1988) Prenatal death and malformations after irradiation of mouse zygotes with neutrons or X-rays. Teratology 37: 599–607

    Article  PubMed  CAS  Google Scholar 

  • Pampfer S, Streffer C (1989) Increased chromosome aberration levels in cells from mouse fetuses after zygote X-irradiaton. Int J Radiat Biol 55: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Peters LJ, Ang KK, Thames HD (1988) Accelerated fractionation in the radiation treatment of head and neck cancers. Acta Oncol 27: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Plowman PN, McElwain TJ, Meadows AT (1991) Complications of cancer management. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Potten CS, Hendry JH (1983) Cytotoxic Insults to Tissues: Effects on Cell Lineages. Churchill-Livingstone, Edinburgh

    Google Scholar 

  • Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K (1996) Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950-1990. Radiat Res 146: 1–27

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative high-sensitivity, fluorescence hybridisation. Proc Natl Acad Sci (USA) 83: 2934–2938

    Article  CAS  Google Scholar 

  • Preston DL, Kusumi S, Tomonaga M et al. (1994) Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat Res 137: S86–S97

    Article  Google Scholar 

  • Puck TT, Marcus PJ (1956) Action of X-rays on mammalian cells. J Exp Med 103: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Ramalho AT, Nascimento RCH, Natarajan AT (1988) Dose assessment by cytogenetic analysis in the Goiania (Brazil) radiation accident. Radiat Protect Dosimetry 25: 97–100

    CAS  Google Scholar 

  • Revell SH (1955) A new hypothesis for chromatid changes. In: Bacq ZM, Alexander P (eds) Proceedings of the Radiobiology Symposium Liège. Butterworth, London, pp 243–253

    Google Scholar 

  • Riepl M, Reitz S (1995) Gonadal dysfunction after radiotherapy. In: Dunst J, Sauer, R (eds) Late sequelae in oncology. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Rodemann HP, Bamberg M (1995) Cellular basis of radiationinduced fibrosis. Radiother Oncol 35: 83–90

    Article  PubMed  CAS  Google Scholar 

  • Ron E, Lubin JH, Shore RE et al. (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141: 259–277

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Casarett G (1968) Clinical radiation pathology. Saunders, Philadelphia

    Google Scholar 

  • Russell LB (1954) The effects of radiation on mammalian prenatal development. In: Hollaender A (ed) Radiation biology. McGraw-Hill, New York, pp 861–918

    Google Scholar 

  • Russell WL (1965) Studies in mammalian radiation genetics. Nucleonics 23: 53–56

    Google Scholar 

  • Russell WL (1977) Mutation frequencies in female mice and the estimation of radiation hazards in women. Proc Natl Acad Sci (USA) 74: 3523–3527

    Article  CAS  Google Scholar 

  • Sachs RK, Chen AM, Brenner DJ (1997) Review: Proximity effects in the production of chromosome aberrations by ionizing radiation. Int J Radiat Biol 71: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, Chen AM, Simpson PJ, Hlatky LR et al. (1999) Clustering of radiation-produced breaks along chromosomes: modelling the effects on chromosome aberrations. Int J Radiat Biol 75: 657–672

    Article  PubMed  CAS  Google Scholar 

  • Sak A, Stuschke M (1998) Repair of ionizing irradiation DNA double-strand breaks (dsb) at the c-myc locus in comparison to the overall genome. Int J Radiation Biol 73: 35–43

    Article  CAS  Google Scholar 

  • Sankaranarayanan K (1993) Ionizing radiation, genetic risk estimation and molecular biology: impact and inferences. Genet 9: 79–84

    CAS  Google Scholar 

  • Sankaranarayanan K (1998) Ionizing radiation and genetic risks. Estimates of the frequencies of Mendelian deseases and spontaneous mutation rates in human populations. Mutat Res 411: 129–178

    Article  PubMed  Google Scholar 

  • Savage JRK, Simpson PJ (1994) On the scoring of FISH-„painted“ chromosome exchange aberrations. Mutat Res 307: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Sax K (1938) Chromosome aberrations induced by X-rays. Genetics 23: 494–516

    PubMed  CAS  Google Scholar 

  • Sax K (1940) An analysis of X-ray-induced chromosomal aberrations in Tradescantia. Genetics 25: 41–68

    PubMed  CAS  Google Scholar 

  • Scherer E, Streffer C, Trott KR (1991) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Schultz-Hector S (1992) Radiation-induced heart disease: review of experimental data on dose response and pathogenesis. Int J Radiat Biol 61: 149–160

    Article  PubMed  CAS  Google Scholar 

  • Schultz-Hector S, Kallfaß E, Sund M (1995) Strahlenfolgen an großen Gefäßen. Strahlenther Onkol 171: 427–436

    PubMed  CAS  Google Scholar 

  • Shimizu Y, Kato H, Schull WJ (1990) Studies of the mortality of A-bomb survivors. 9. Mortality, 1950-1985: Part 2. Cancer mortality based on the recently revised doses (DS86). Radiat Res 121: 120–141

    Article  PubMed  CAS  Google Scholar 

  • Sinclair WK (1968) Cyclic X-ray responses in mammalian cells in vitro. Radiat Res 33: 620–643

    Article  PubMed  CAS  Google Scholar 

  • Smalley RS, Evans MJG (1991) Radiation morbidity to the gastrointestinal tract and liver. In: Plowman PN, McElwain TJ, Meadows, AT (eds) Complications of cancer management. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Smith ML, Fornace AJ (1996) Mammalian DNA damageinducible genes associated with growth arrest and apoptosis. Mut Res 340: 109–124

    Article  Google Scholar 

  • Strahlenschutzkommission (1984) Wirkungen nach pränataler Bestrahlung. Veröffentlichungen der Strahlenschutzkommission, Bd. 2. Fischer, Stuttgart New York

    Google Scholar 

  • Streffer C (1991) Stochastische und nichtstochastische Strahlenwirkungen. Nuklearmedizin 30: 198–205

    Google Scholar 

  • Streffer C (1997) Genetische Prädisposition und Strahlenempfindlichkeit bei normalen Geweben. Strahlenther Onkol 173: 462–468

    Article  PubMed  CAS  Google Scholar 

  • Streffer C, Molls M (1987) Cultures of preimplantation mouse embryos: a model for radiobiological studies. In: Lett JT (ed) Advances in Radiation Biology. Academic Press, San Diego New York Berkeley, pp 169–213

    Google Scholar 

  • Streffer C, Müller WU (1995) Bewertung des Strahlenrisikos durch die Röntgendiagnostik. In: Veröffentlichungen der Strahlenschutzkommission, Band 30. Fischer, Jena Stuttgart Lübeck Ulm

    Google Scholar 

  • Taucher-Scholz G, Heilmann J, Schneider M, Kraft G (1995) Detection of heavy-ion-induced DNA double-strand breaks using static-field gel electrophoresis. Radiation Environ Biophys 34: 101–106

    Article  CAS  Google Scholar 

  • Terasima T, Tolmach LJ (1963) Variation in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3:11–13

    Article  PubMed  CAS  Google Scholar 

  • Thacker J (1986) The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells. Int J Radiation Biol 50: 1–30

    Article  CAS  Google Scholar 

  • Thacker J, Wilkinson RE, Goodhead DG (1986) The induction of chromosome exchange aberrations by carbon ultrasoft X-rays in V79 hamster cells. Int J Radiat Biol 49: 645–656

    Article  CAS  Google Scholar 

  • Thompson DE, Mabuchi K, Ron E et al. (1994) Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987. Radiat Res 137: S17–S67

    Article  PubMed  CAS  Google Scholar 

  • Thurn P, Bücheler E (1992) Einführung in die radiologische Diagnostik, 9. Aufl. Thieme, Stuttgart New York, S 45

    Google Scholar 

  • Trott KR (1972) Strahlenwirkung auf die Vermehrung von Säugetierzellen. In: Hug O, Zuppinger A (Hrsg) Strahlenbiologie, 3. Teil. Springer, Berlin Heidelberg New York Tokyo. Handbuch der medizinischen Radiologie, Bd. II/3, S 43–125

    Google Scholar 

  • Trott KR, Lengfelder E (1986) Biologische Grundlagen der Strahlenwirkung und des Strahlenschutzes. In: Lissner J (Hrsg) Radiologie I. Enke, Stuttgart, S 64–83

    Google Scholar 

  • Trott KR, Hermann T (1991) Radiation effects on abdominal organs. In: Scherer E, Streffer C, Trott KR (eds) Radiopathology of Organs and Tissues. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Trott KR, Kummermehr J. Radiation effects in skin. In: Scherer E, Streffer C, Trott KR (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Trott KR, Kummermehr J (1993) The time factor and repopulation in tumors and normal tissues. Sem Radiat Oncol 3: 115–125

    Article  Google Scholar 

  • Tucker JD, Morgan WF, Awa AA et al. (1995) A proposed system for scoring structural aberrations detected by chromosome painting. Cytogenet Cell Genet 68: 211–221

    Article  PubMed  CAS  Google Scholar 

  • Uma Devi, P, Baskar R, Hande MP (1994) Effect of exposure to low-dose Gamma radiation during late organogenesis in the mouse fetus. Radiat Res 138: 133–138

    Article  Google Scholar 

  • UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (1977) The 1977 Report to the General Assembly with Annexes. United Nations, New York

    Google Scholar 

  • UNSCEAR (1986) Genetic and somatic effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (1988) United Nations Scientific Committee on the Effects of Atomic Radiation: Sources, Effects and Risks of Ionizing Radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (1993) United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and Effects of Ionizing Radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (1993) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (1994) United Nations Scientific Committee on the Effects of Atomic Radiation: Epidemiological Studies of Radiation Carcinogenesis. United Nations, New York

    Google Scholar 

  • Wallace SS (1994) DNA damage processed by excision repair: biological consequences. Int J Radiation Biol 66: 579–589

    Article  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Weinstein IB (1996) Divided against itself. Helix 2: 20–27

    Google Scholar 

  • Yoshimoto Y, Kato H, Schull WJ (1988) Risk of cancer among children exposed in utero to the bomb radiation. Lancet 2: 665–669

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Neel JV, Schull WJ, Kato H, Soda M, Eto R, Mabuchi K (1990) Malignant tumors during the first 2 decades of life in the offspring of atomic bomb survivors. Am J Hum Genet 46: 1041–1052

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauchinger, M. et al. (2003). Biologische Strahlenwirkungen. In: Schmidt, T. (eds) Handbuch diagnostische Radiologie. Handbuch diagnostische Radiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55825-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55825-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62553-4

  • Online ISBN: 978-3-642-55825-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics