Skip to main content

Coordination of V-ATPase and V-PPase at the Vacuolar Membrane of Plant Cells

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 64))

Abstract

The vacuole is one of the most conspicuous multifunctional compartments within a plant cell. In most mature plant cells the central vacuole occupies as much as 90% of the cell volume, or even more in plants with crassulacean acid metabolism (CAM). The vacuole is involved in the control of cell volume and cell turgor, the regulation of cytoplasmic ion concentrations, and pH, sequestration of toxic ions and detoxification of xenobiotics, and transient storage of metabolites (Sze et al. 1992; Blumwald and Gelli 1997; Martinoia and Ratajczak 1997; Wink 1997). Molecules stored in the vacuole include inorganic ions such as sodium, potassium, calcium, magnesium, heavy metals, chloride, and nitrate; organic molecules such as carbohydrates, organic acids, amino acids, polyamines, peptides; and secondary plant products. Regulation of content and volume of plant vacuoles depends on the coordinated action of transporters and channels located in the vacuolar membrane, i.e. the tonoplast (Maeshima 2001). Since transport in most cases has to be driven against a concentration gradient, energisation of the tonoplast is required. This task is achieved by two key transport proteins of the tonoplast: the vacuolar H+-translocating adenosine triphosphatase (V-ATPase, EC 3.6.1.34) and the vacuolar H+-translocating pyrophosphatase (V-PPase, EC 3.6.1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  PubMed  CAS  Google Scholar 

  • Adachi I, Puopolo K, Marquez-Sterling N, Arai H, Forgac M (1990) Dissociation, cross-linking and glycosylation of the coated vesicle proton pump. J Biol Chem 265:967–973

    PubMed  CAS  Google Scholar 

  • Aviezer-Hagai K, Nelson H, Nelson N (2000) Cloning and expression of cDNA encoding plant V-ATPase subunits in the corresponding yeast null mutants. Biochim Biophys Acta 1459:489–498

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros E, Donaire JP, Belver A (1996) Effects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles isolated from sunflower roots. Physiol Plant 97:259–268

    Article  CAS  Google Scholar 

  • Baltscheffsky M, Nadanaciva S, Schultz A (1998) A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim Biophys Acta 1364:301–306

    Article  PubMed  CAS  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-PPases: a tightly membrane-bound family. FEBS Lett 457:527–533

    Article  PubMed  CAS  Google Scholar 

  • Bañuls J, Ratajczak R, Lüttge U (1995) NaCl stress enhances proteolytic turnover of the tonoplast H+-ATPase of Citrus sinensis: appearance of a 35 kDa fragment of subunit A still exhibiting ATP-hydrolysis activity? Plant Cell Environ 18:1341–1344

    Article  Google Scholar 

  • Bauerle C, Magembe C, Briskin DP (1998) Characterization of a red beet protein homologous to the essential 36-kilodalton subunit of the yeast V-type ATPase. Plant Physiol 117:859–867

    Article  PubMed  CAS  Google Scholar 

  • Baykov A, Bakuleva NP, Rea P (1993) Steady-state kinetics of substrate hydrolysis of vacuolar H+-pyrophosphatase. A simple three-state model. Eur J Biochem 217:755–762

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Canut H, Lüttge U, Maeshima M, Marigo G, Ratajczak R (1995) Comparison of the behaviour of the tonoplast inorganic H+-pyrophosphatase from cells of Catharanthus roseus and leaves of Mesembryanthemum crystallinum performing C3 photosynthesis and the obligate CAM-plant Kalanchoë daigremontiana. J Plant Physiol 146:88–94

    Article  CAS  Google Scholar 

  • Bennett AB, Spanswick RM (1983) Optical measurements of ΔpH and ΔΨ in corn root membrane vesicles. Kinetic analysis of Cl effects on a proton-translocating ATPase. J Membr Biol 71:95–107

    Article  CAS  Google Scholar 

  • Bennett AB, Spanswick R (1984) H+-ATPase activity from storage tissue of Beta vulgaris. II. H+/ATP stoichiometry of an anion sensitive H+-ATPase. Plant Physiol 74:545–548

    Article  PubMed  CAS  Google Scholar 

  • Binzel ML (1995) NaCl-induced accumulation of tonoplast and plasma membrane H+-ATPase message in tomato. Physiol Plant 94:722–728

    Article  CAS  Google Scholar 

  • Binzel ML, Dunlap JR (1995) Abscisic acid does not mediate NaCl-induced accumulation of 70 kDa subunit tonoplast H+-ATPase message in tomato. Planta 179:563–568

    Google Scholar 

  • Blumwald E, Gelli A (1997) Secondary inorganic ion transport at the tonoplast. In: Leigh RA, Sanders D (eds) The plant vacuole. Advances in botanical research, vol 25. Academic Press, San Diego, pp 401–417

    Google Scholar 

  • Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci USA 94:14291–14293

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1998) Structure of V-type ATPase from Clostridium fervidus by electron microscopy. Photosyn Res 57:267–273

    Article  CAS  Google Scholar 

  • Boekema EJ, van Breemen JFL, Brisson A, Ubbink-Kok T, Konings WN, Lolkema JS (1999) Connecting stalks in V-type ATPase. Nature 401:37–38

    Article  PubMed  CAS  Google Scholar 

  • Böttcher B, Schwarz L, Gräber P (1998) Direct indication for the existence of a double stalk in CF1F0. J Mol Biol 281:757–762

    Article  PubMed  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycin: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Brauer D, Tu SI (1994) Effects of ATP analogs on the proton pumping by the vacuolar H+-ATPase from maize roots. Physiol Plant 91:442–448

    Article  CAS  Google Scholar 

  • Brauer D, Conner DN, Tu SI (1992) Effects of pH on proton transport by vacuolar pumps from maize roots. Physiol Plant 86:63–70

    Article  CAS  Google Scholar 

  • Brauer D, Tu SI, Hsu AF, Patterson D (1993) Evidence for an indirect coupling mechanism for the nitrate-sensitive proton pump from corn root tonoplast. Physiol Plant 89:588–591

    Article  CAS  Google Scholar 

  • Braulke T (1996) Origin of lysosomal proteins. In: Lloyd JB, Maison RW (eds) Subcellular biochemistry, vol 27. Biology of the lysosome. Plenum Press, New York, pp 15–49

    Google Scholar 

  • Bremberger C, Lüttge U (1992) Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of crassulacean acid metabolism. Planta 188:575–580

    Article  CAS  Google Scholar 

  • Bremberger C, Haschke H-P, Lüttge U (1988) Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible crassulacean acid metabolism. Planta 175:465–470

    Article  CAS  Google Scholar 

  • Bressan RA, Hasegawa PM, Prado JM (1998) Plants use calcium to resolve salt stress. Trans Plant Sci 3:411–412

    Article  Google Scholar 

  • Britten CJ, Zhen R-G, Kim EJ, Rea PA (1992) Reconstitution of transport function of the vacuolar H+-translocating inorganic pyrophosphatase. J Biol Chem 267:21850–21855

    PubMed  CAS  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  PubMed  CAS  Google Scholar 

  • Colombo R, Cerana R (1993) Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota. J Plant Physiol 142:226–507

    Article  CAS  Google Scholar 

  • Cooley MB, Yang H, Dahal P, Mella RA, Downie AB, Haigh AM, Bradford KJ (1999) Vacuolar H+-ATPase is expressed in response to gibberellin during tomato seed germination. Plant Physiol 121:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Crider BP, Xie XS, Stone DK (1994) Bafilomycin inhibits proton flow through the H+-channel of vacuolar proton pumps. J Biol Chem 269:17379–17381

    PubMed  CAS  Google Scholar 

  • Dancer J, ap Rees T (1989) The effects of 2,4-dinitrophenol and anoxia on the inorganic pyrophosphate content of spadix of Arum maculatum and root apices of Pisum sativum. Planta 178:421–424

    Article  CAS  Google Scholar 

  • Darely CP, Skiera LA, Northrop FD, Sanders D, Davies JM (1998) Tonoplast inorganic pyrophosphatase in Vicia faba guard cells. Planta 206:272–277

    Article  Google Scholar 

  • Darley CP, Davies JM, Sanders D (1995) Chill-induced changes in the activity and abundance of the vacuolar proton-pumping pyrophosphatase from mung bean hypocotyls. Plant Physiol 109:659–665

    PubMed  CAS  Google Scholar 

  • Davies JM, Rea PA, Sanders D (1991) Vacuolar proton-pumping pyrophosphatase in Beta vulgaris shows vectorial activation by potassium. FEBS Lett 278:666–668

    Article  Google Scholar 

  • Davies JM, Poole RJ, Rea PA, Sanders D (1992) Potassium transport into plant vacuoles energised directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sei USA 89:11701–11705

    Article  CAS  Google Scholar 

  • Davies JM, Poole RJ, Sanders D (1993) The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP: apparent significance for inorganic-pyrophosphate-driven reactions of intermediate metabolism. Biochim Biophys Acta 1141:29–36

    Article  CAS  Google Scholar 

  • Davies JM, Hunt I, Sanders D (1994) Vacuolar H+-pumping ATPase variable transport coupling ratio controlled by pH. Proc Natl Acad Sci USA 91:8547–8551

    Article  PubMed  CAS  Google Scholar 

  • Davies JM, Darley CP, Sanders D (1997) Energetics of the plasma membrane pyrophosphatase. Trends Plant Sci 2:9–10

    Article  Google Scholar 

  • Depta H, Holstein SEH, Robinson DG, Lützelschwab M, Michalke W (1991) Membrane markers in highly purified clathrin-coated vesicles from Cucurbita hypocotyls. Planta 183:434–442

    Article  CAS  Google Scholar 

  • Dietz K-J, Arbinger B (1996) cDNA sequence and expression of subunit E of the vacuolar H+-ATPase in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Biochim Biophys Acta 1281:134–138

    Article  PubMed  Google Scholar 

  • Dietz K-J, Rudioff S, Ageorges A, Eckerskorn C, Fischer K, Arbinger B (1995) Subunit E of the vacuolar H+-ATPase of Hordeum vulgare L.: cDNA cloning, expression and immunological analysis. Plant J 8:521–529

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Heber H, Mimura T (1998) Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination. Biochim Biophys Acta 1373:87–92

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnes AN, Gollack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  PubMed  CAS  Google Scholar 

  • Domgall I, Venzke D, Lüttge U, Ratajczak R, Böttcher B (2002) Three-dimensional model of a plant V-ATPase based on electron microscopy. J Biol Chem 227:13115–13121

    Article  CAS  Google Scholar 

  • Drobny M, Schnölzer M, Fiedler S, Lüttge U, Fischer-Schliebs E, Christian A-L, Ratajczak R (2002) Phenotypic subunit composition of the tobacco (Nicotiana tabacum L.) vacuolar type H+-translocating ATPase. Biochim Biophys Acta (in press)

    Google Scholar 

  • Dröse S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effects of modified Bafilomycins and Concanamycins on P-and V-type adenosinetriphosphatases. Biochemistry 32:3902–3906

    Article  PubMed  Google Scholar 

  • Drozdowicz YM, Lu Y-P, Patel V, Fitz-Gibbon S, Miller JH, Rea PA (1999) A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energised pumps. FEBS Lett 460:505–512

    Article  PubMed  CAS  Google Scholar 

  • Drozdowicz YM, Kissinger JC, Rea PA (2000) AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol 123:353–362

    Article  PubMed  CAS  Google Scholar 

  • Dschida WJ, Bowman BJ (1992) Structure of the vacuolar ATPase from Neurospora crassa as determined by electron microscopy. J Biol Chem 267:18783–18789

    PubMed  CAS  Google Scholar 

  • Dschida WJ, Bowman BJ (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 270:1557–1563

    Article  PubMed  CAS  Google Scholar 

  • DuPont FM, Morrissey PJ (1992) Subunit composition and Ca-ATPase activity of the vacuolar ATPase from barley roots. Arch Biochem Biophys 294:341–346

    Article  PubMed  CAS  Google Scholar 

  • Emig I (1999) Intrazelluläre Verteilung der V-ATPase in der C3-CAM intermediären Pflanze Mesembryanthemum crystallinum. PhD Thesis, Darmstadt University of Technology, Darmstadt, Germany

    Google Scholar 

  • Façanha AR, de Meis L (1998) Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495

    Article  Google Scholar 

  • Feng Y, Forgac M (1992) A novel mechanism for regulation of vacuolar acidification. J Biol Chem 269:13224–13230

    Google Scholar 

  • Feng Y, Forgac M (1994) Inhibition of vacuolar H+-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 267:19769–19772

    Google Scholar 

  • Fischer-Schliebs E, Ball E, Berndt E, Besemfelder-Butz E, Binzel ML, Drobny M, Mühlenhoff D, Müller ML, Rakowski K, Ratajczak R (1997a) Differential immunological cross-reactions with antisera against the V-ATPase of Kalanchoë daigremontiana reveals structural differences of V-ATPase subunits of different plant species. Biol Chem 378:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Schliebs E, Mariaux J-B, Lüttge U (1997b) Stimulation of H+-transport activity of vacuolar H+-ATPase by activation of H+-PPase in Kalanchoë blossfeldiana. Biol Plant 39:169–177

    Article  CAS  Google Scholar 

  • Fischer-Schliebs E, Ratajczak R, Weber P, Tavakoli N, Ullrich CI, Lüttge U (1998) Concordant time-dependent patterns of activities and enzyme protein amounts of V-PPase and V-ATPase in induced (flowering and CAM or tumour) and non-induced plant tissues. Bot Acta 111:130–136

    CAS  Google Scholar 

  • Fischer-Schliebs E, Drobny M, Ball E, Ratajczak R, Lüttge U (2000) Variation in nitrate nutrition leads to changes in performance of the V-ATPase and immunological differences of proteolipid subunit c in tobacco (Nicotiana tabacum L.) leaves. Aust J Plant Physiol 27:639–648

    CAS  Google Scholar 

  • Forgac M (2000) Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H+-ATPases. J Exp Biol 203:71–80

    PubMed  CAS  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in developing potato tubers and other plant tissues. Planta 189:329–339

    Article  CAS  Google Scholar 

  • Geigenberger P, Langenberger S, Wilke I, Heineke D, Heidt HW, Stitt M (1993) Sucrose is metabolised by sucrose synthase and glycolysis within the phloem complex of Ricinus communis L. seedlings. Planta 190:446–453

    Article  CAS  Google Scholar 

  • Getz HP, Klein M (1995) The vacuolar ATPase of red beet storage tissue: electron microscopic demonstration of the “head-and-stalk” structure. Bot Acta 108:14–23

    CAS  Google Scholar 

  • Gogarten JP, Starke T, Kibak H, Fishmann J, Taiz L (1992) Evolution and isoforms of V-ATPase subunits. J Exp Biol 172:137–147

    PubMed  CAS  Google Scholar 

  • Golldack D, Dietz K-J (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Studies using ligand protection from covalent inhibitors. Plant Physiol 111:195–202

    PubMed  CAS  Google Scholar 

  • Gordon-Weeks R, Koren’kov VD, Steele SH, Leigh RH (1997) Tris is a competitive inhibitor of K+ activation of the vacuolar H+-pumping pyrophosphatase. Plant Physiol 114:901–905

    PubMed  CAS  Google Scholar 

  • Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813

    Article  PubMed  CAS  Google Scholar 

  • Graf R, Harvey WR, Wieczorek H (1996) Purification and properties of a cytosolic V1-ATPase. J Biol Chem 217:20908–20913

    Google Scholar 

  • Graham LA, Stevens TH (1999) Assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr 31:39–47

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Hill KJ, Stevens TH (1998) Assembly of the yeast vacuolar H+-ATPase occurs in the endoplasmic reticulum and requires a Vmal2p/Vma22p assembly complex. J Cell Biol 142:39–49

    Article  PubMed  CAS  Google Scholar 

  • Hager A, Biber W (1984) Functional and regulatory properties of H+ pumps at the tonoplast and plasma membranes of Zea mays coleoptiles. Z Naturforsch 39:927–937

    Google Scholar 

  • Hager A, Lanz C (1989) Essential sulfhydryl groups in the catalytic center of the tonoplast H+-ATPase from coleoptiles of Zea mays L. as demonstrated by biotin-streptavidin-peroxidase system. Planta 180:116–122

    Article  CAS  Google Scholar 

  • Hasenfratz M-P, Tsou C-L, Wilkins TA (1995) Expression of two related vacuolar H+-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol 108:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Kurkdjian A, Guern J, Flügge UI (1989) Comparative studies on the electrical properties of the H+-translocating ATPase and pyrophosphatase of the vacuolarlysosomal compartment. EMBO J 8:2835–2841

    PubMed  CAS  Google Scholar 

  • Herman EM, Li X, Su RT, Larsen P, Hsu HT, Sze H (1994) Vacuolar-type H+-ATPases are associated with the endoplasmic reticulum and pro-vacuoles of root tip cells. Plant Physiol 106:1313–1324

    PubMed  Google Scholar 

  • Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y (1997) VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem 272:4795–4803

    Article  PubMed  CAS  Google Scholar 

  • Ho MN, Hirata R, Umemoto N, Ohya Y, Takatsuki A, Stevens TH, Anraku Y (1993) VMA13 encodes a 54-kDa vacuolar H+-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J Biol Chem 268:18286–18292

    PubMed  CAS  Google Scholar 

  • Hosaka M, Kanayama Y, Shiratake K, Yamaki S (1994) Tonoplast H+-ATPase of mature pear fruit. Phytochemistry 36:565–567

    Article  CAS  Google Scholar 

  • Hunt IE, Bowman BJ (1997) The intriguing evolution of the “b” and “G” subunits in F-type and V-type ATPases: isolation of the vma-10 gene from Neurospora crassa. J Bioenerg Biomembr 29:533–540

    Article  PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK, DuPont FM (1988) The effects of salt stress on polypeptides in membrane fractions from barley roots. Plant Physiol 88:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Satoh S, Maeshima M, Mukohata Y, Moritani C (1991) A vacuolar ATPase and pyrophosphatase in Acetabularia acetabulum. Biochim Biophys Acta 1070:77–82

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Rahman MH, Oritani C, Umami K, Tanimura Y, Akagi R, Tanaka Y, Maeshima M, Watanabe Y (1999) A vacuolar H+-pyrophosphatase in Acetabularia acetabulum: molecular cloning and comparison with higher plants and a bacterium. J Exp Bot 50:139–140

    CAS  Google Scholar 

  • Jiang SS, Fan LL, Yang SJ, Kuo SY, Pan RL (1997) Purification and characterization of thylakoid membrane-bound inorganic pyrophosphatase from Spinacia oleracea L. Arch Biochem Biophys 346:105–112

    Article  PubMed  CAS  Google Scholar 

  • Johannes E, Felle H (1990) Proton gradient across the tonoplast of Riccia fluitans as a result of the joint action of two electroenzymes. Plant Physiol 93:412–417

    Article  PubMed  CAS  Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Plant Sci 22:420–423

    CAS  Google Scholar 

  • Kaestner KH, Randall SK, Sze H (1988) N,N′-Dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase of barley roots. J Biol Chem 263:1388–1393

    Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    PubMed  CAS  Google Scholar 

  • Karlson J (1975) Membrane-bound potassium and magnesium ion stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet (Beta vulgaris L.). Biochim Biophys Acta 399:356–363

    Article  Google Scholar 

  • Kasai M, Sasaki M, Tanakamura S, Yamamoto Y, Matsumoto H (1993a) Possible involvement of abscisic acid in increases in activities of two vacuolar H+-pumps in barley roots under aluminium stress. Plant Cell Physiol 34:1335–1338

    CAS  Google Scholar 

  • Kasai M, Yamamoto Y, Maeshima M, Matsumoto H (1993b) Effects of in vivo treatment with abscisic acid and/or cytokinin on activities of vacuolar H+-ATPase pumps of tonoplast enriched membrane vesicles prepared from barley roots. Plant Cell Physiol 34:1107–1115

    CAS  Google Scholar 

  • Kasai M, Nakamura T, Kudo N, Sato H, Maeshima M, Sawada S (1998) The activity of the root vacuolar H+-pyrophosphatase in lye plants grown under conditions deficient in mineral nutrients. Plant Cell Physiol 39:890–894

    Article  PubMed  CAS  Google Scholar 

  • Kasamo K, Yamaguchi M, Nakamura Y (2000) Mechanism of the chilling-induced decrease in proton pumping across the tonoplast of rice cells. Plant Cell Physiol 41:840–849

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2000) Tissue specificity of E subunit isoforms of plant vacuolar H+-ATPase and existence of isotype enzymes. J Biol Chem 275:6515–6522

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Kim EJ, Rea PA (1994) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol 106:375–382

    Article  PubMed  CAS  Google Scholar 

  • Kirsch M, Zhigang A, Viereck R, Low R, Rausch T (1996) Salt stress induces an increased expression of V-type H+-ATPase in mature sugar-beet leaves. Plant Mol Biol 32:543–547

    Article  PubMed  CAS  Google Scholar 

  • Klink R, Lüttge U (1991) Electron-microscopic demonstration of a “head and stalk” structure of the leaf vacuolar ATPase in Mesembryanthemum crystallinum L. Bot Acta 104:122–131

    CAS  Google Scholar 

  • Klink R, Lüttge U (1992) Quantification of visible structural changes of the VoV1-ATPase in the leaf-tonoplast of Mesembryanthemum crystallinum by freeze-fracture replicas prepared during the C3-photosynthesis to CAM transition. Bot Acta 105:414–420

    CAS  Google Scholar 

  • Klink R, Haschke H-P, Kramer D, Lüttge U (1990) Membrane particles, proteins and ATPase activity of tonoplast vesicles of Mesembryanthemum crystallinum in the C-3 and CAM state. Bot Acta 103:24–31

    CAS  Google Scholar 

  • Kluge C, Golldack D, Dietz K-J (1999) Subunit D of the vacuolar H+-ATPase of Arabidopsis thaliana. Biochim Biophys Acta 1419:105–110

    Article  PubMed  CAS  Google Scholar 

  • Kramer D, Mangold B, Hille A, Emig I, Hess A, Ratajczak R, Lüttge U (1995) The head structure of a higher plant V-type H+-ATPase is not always a hexamer but also a pentamer. J Exp Bot 46:1633–1636

    Article  CAS  Google Scholar 

  • Krauss W, Schiebel G, Eberl D, Hager A (1987) Blue light induced reversible inactivation of the tonoplast-type H+-ATPase from corn coleoptiles in the presence of flavins. Photochem Photobiol 45:873–844

    Article  Google Scholar 

  • Krisch R, Rakowski K, Ratajczak R (2000) Processing of V-ATPase subunit B of Mesembryanthemum crystallinum L. is mediated in vitro by a protease and/or reactive oxygen species. Biol Chem 381:583–592

    Article  PubMed  CAS  Google Scholar 

  • Lai S, Randall SK, Sze H (1988) Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots. J Biol Chem 263:16731–16737

    PubMed  CAS  Google Scholar 

  • Lai S, Watson JC, Hansen J, Sze H (1991) Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H+-ATPase from a higher plant. J Biol Chem 266:16078–16084

    PubMed  CAS  Google Scholar 

  • Landolt-Marticorena C, Kahr WH, Zawarinski P, Correa J, Manolson MF (1999) Substrate-and inhibitor-induced conformational changes in the yeast V-ATPase provide evidence for communication between the catalytic and proton-translocating sectors. J Biol Chem 274:26057–26064

    Article  PubMed  CAS  Google Scholar 

  • Landolt-Marticorena C, Williams KM, Correa J, Chen W, Manolson MF (2000) Evidence that the NH2 terminus of VpH1p, an integral subunit of the Vo sector of the yeast V-ATPase, interacts directly with the Vma13p subunits of the V1 sector. J Biol Chem 275:15449–15457

    Article  PubMed  CAS  Google Scholar 

  • Langhans M, Ratajczak R, Lützelschwab M, Michalke W, Wächter R, Fischer-Schliebs E, Ullrich C (2001) Immunolocalization of plasma-membrane H+-ATPase and tonoplast-type pyrophosphatase in the plasma membrane of the sieve element-companion cell complex in the stem of Ricinus communis L. Planta 213:11–19

    Article  PubMed  CAS  Google Scholar 

  • Leach RP, Rogers WJ, Wheeler KP, Flowers TJ, Yeo AR (1990) Molecular markers for ion compartmentation in cells of higher plants. I. Isolation of vacuoles of high purity. J Exp Bot 41:1079–1087

    Article  Google Scholar 

  • Lee Taiz S, Taiz L (1991) Ultrastructural comparison of the vacuolar and mitochondrial H+-ATPase of Daucus carota. Bot Acta 104:117–121

    Google Scholar 

  • Lehr A, Kirsch M, Viereck R, Schiemann J, Rausch T (1999) cDNA and genomic cloning of sugar beet V-type H+-ATPase subunit A and c isoforms: evidence for coordinate expression during plant development and coordinate induction in response to high salinity. Plant Mol Biol 39:463–475

    Article  PubMed  CAS  Google Scholar 

  • Leigh RA, Pope AJ, Jennings IR, Sanders D (1992) Kinetics of the vacuolar H+-pyrophosphatase. The roles of magnesium, pyrophosphate, and their complexes as substrates, activators, and inhibitors. Plant Physiol 100:1698–1705

    Article  PubMed  CAS  Google Scholar 

  • Leigh RA, Gordon-Weeks R, Steele SH, Koren’kov VD (1994) The H+-pumping inorganic pyrophosphatase of the vacuolar membrane of higher plants. In: Blatt MR, Leigh RA, Sanders D (eds) Membrane transport in plants and fungi: molecular mechanism and control. Symposia of the Society of Experimental Biology, vol XLVIII. The Company of Biologists Limited, Cambridge, pp 61–75

    Google Scholar 

  • Leng X-H, Manolson MF, Liu Q, Forgac M (1996) Site-directed mutagenesis of the 100-kDa subunit (Vphlp) of the yeast vacuolar (H+)-ATPase. J Biol Chem 271:22487–22493

    Article  PubMed  CAS  Google Scholar 

  • Leng X-H, Manolson MF, Forgac M (1998) Function of the COOH-terminal domain of Vphlp in activity and assembly of the yeast V-ATPase. J Biol Chem 273:6716–6723

    Article  Google Scholar 

  • Lerchl J (1995) Molekulare Analysen zum Saccharose-und Pyrophosphatstoffwechsel in transgenen Pflanzen. PhD Thesis, FU Berlin, Berlin, Germany

    Google Scholar 

  • Lerchl J, Geigenberger P, Stitt M, Sonnewald U (1995a) Impaired photoassimilate partitioning caused by phloem specific removal of pyrophosphate can be complemented by a phloem specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell 7:259–270

    PubMed  CAS  Google Scholar 

  • Lerchl J, König S, Zrenner R, Sonnewald U (1995b) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast bound proton translocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29:833–840

    Article  PubMed  CAS  Google Scholar 

  • Li XH, Sze H (1999) A 100 kDa polypeptide associates with the Vo membrane sector but not with the active oat vacuolar H+-ATPase, suggesting a role in assembly. Plant J 17:19–30

    Article  PubMed  Google Scholar 

  • Low R, Rausch T (1996) In suspension-cultured Daucus carota cells salt stress stimulates H+-transport but not ATP hydrolysis of the V-ATPase. J Exp Bot 47:1725–1732

    Article  Google Scholar 

  • Low R, Rockel B, Kirsch M, Ratajczak R, Hörtensteiner S, Martinoia E, Lüttge U, Rausch T (1996) Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110:259–265

    Article  PubMed  CAS  Google Scholar 

  • Long AR, Williams LE, Nelson SJ, Hall JL (1995) Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. J Plant Physiol 146:629–638

    Article  CAS  Google Scholar 

  • Ludwig J, Krescher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schägger H (1998) Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 273:10939–10947

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U, Ratajczak R (1997) The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. In: Leigh RA, Sanders D (eds) The plant vacuole. Advances in botanical research, vol 25. Academic Press, San Diego, pp 253–296

    Google Scholar 

  • Lüttge U, Smith J AC, Marigo G, Osmond CB (1981) Energetics of malate accumulation in the vacuoles of Kalanchoë tubiflora cells. FEBS Lett 126:81–84

    Article  Google Scholar 

  • Lüttge U, Fischer-Schliebs E, Ratajczak R, Kramer D, Berndt E, Kluge M (1995a) Functioning of the tonoplast in vacuolar C-storage and remobilization in crassulacean acid metabolism. J Exp Bot 46:1377–1388

    Article  Google Scholar 

  • Lüttge U, Ratajczak R, Rausch T, Rockel B (1995b) Stress responses of tonoplast proteins: an example for molecular ecophysiology and the search for eco-enzymes. Acta Bot Neerl 44:343–362

    Google Scholar 

  • Lüttge U, Fischer-Schliebs E, Ratajczak R (2001) The H+-pumping V-ATPase of higher plants: a versatile “eco-enzyme” in response to environmental stress. Cell Biol Mol Lett 6:356–361

    Google Scholar 

  • MacDonald JI, Weeks G (1988) Evidence for a membrane-bound pyrophosphatase in Dictyostelium discoideum. FEBS Lett 238:9–12

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiol 31:311–317

    CAS  Google Scholar 

  • Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196:11–17

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–499

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M, Yoshida S (1989) Purification and properties of a vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073

    PubMed  CAS  Google Scholar 

  • Mandala S, Taiz L (1986) Characterization of the subunit structure of the maize tonoplast ATPase. J Biol Chem 261:12850–12855

    PubMed  CAS  Google Scholar 

  • Mandel M, Moriyama Y, Hulmes JD, Pan YC, Nelson H, Nelson N (1988) cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci USA 85:5521–5524

    Article  PubMed  CAS  Google Scholar 

  • Manolson MF, Proteau D, Preston RA, Stenbit A, Roberts BT, Hoyt MA, Preuss D, Mulholland J, Botstein D, Jones EW (1992) The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H+-ATPase. J Biol Chem 267:14292–14303

    Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    PubMed  CAS  Google Scholar 

  • Mariaux J-B, Becker A, Kemna I, Ratajczak R, Fischer-Schliebs E, Kramer D, Lüttge U, Marigo G (1994) Visualization by freeze-fracture electron microscopy of intramembraneous particles corresponding to the tonoplast H+-pyrophosphatase and H+-ATPase of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie. Bot Acta 107:321–327

    CAS  Google Scholar 

  • Mariaux J-B, Fischer-Schliebs E, Lüttge U, Ratajczak R (1997) Dynamics of activity and structure of the tonoplast vacuolar-type H+-ATPase in plants with differing CAM expression and in a C3 plant under salt stress. Protoplasma 196:181–189

    Article  CAS  Google Scholar 

  • Marquardt G, Lüttge U (1987) Proton translocating enzymes at the tonoplast of leaf cells of the CAM plant Kalanchoë daigremontiana. II. The pyrophosphatase. J Plant Physiol 129:269–286

    Article  CAS  Google Scholar 

  • Marquardt-Jarczyk G, Lüttge U (1990a) PPiase-activated ATP-dependent H+-transport at the tonoplast of mesophyll cells of the CAM plant Kalanchoë daigremontiana. Bot Acta 103:203–213

    CAS  Google Scholar 

  • Marquardt-Jarczyk G, Lüttge U (1990b) Different valinomycin effects on tonoplast ATPase and PP se of the CAM plant Kalanchoë daigremontiana measured by formation of H+ gradients and membrane potentials. CR Acad Sci Paris 310:311–316

    CAS  Google Scholar 

  • Marsh K, González, Echeverría E (2001) Partial characterzation of H+-translocating inorganic pyrophosphatase from 3 citrus varieties differing in vacuolar pH. Physiol Plant 111:519–526

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Ratajczak R (1997) Transport of organic molecules across the tonoplast. In: Leigh RA, Sanders D (eds) The plant vacuole. Advances in botanical research, vol 25. Academic Press, San Diego, pp 365–400

    Google Scholar 

  • Martiny-Baron G, Manolson MF, Poole RJ, Hecker D, Scherer GFE (1992) Proton transport and phosphorylation of tonoplast polypeptides from zucchini are stimulated by the phospholipid platelet-activating factor. Plant Physiol 99:1635–1641

    Article  PubMed  CAS  Google Scholar 

  • Matsuura-Endo C, Maeshima M, Yoshida S (1992) Mechanism of the decline in vacuolar H+-ATPase activity in mung bean hypocotyls during chilling. Plant Physiol 100:718–722

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Schueller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Düsterhöft A, Stiekema W, Entian K-D, Terryn N, Harris B, Ansorge W, Brandt P, Grivell LA, Rieger M, Weichselgartner M, de Simone V, Obermaier B, Mache R, Müller M, Kreis M, Delseny M, Puigdomenech P, Watson M, Schmidtheini T, Reichert B, Portetelle D, Perez-Alonso M, Boutry M, Bancroft I, Vos P, Hoheisel J, Zimmermann W, Wedler H, Ridley P, Langham S-A, McCullagh B, Bilham L, Robben J, Van der Schueren J, Grymonprez B, Chuang Y-J, Vandenbussche F, Braeken M, Weltjens I, Voet M, Bastiaens I, Aert R, Defoor E, Weitzenegger T, Bothe G, Ramsperger U, Hilbert H, Braun M, Holzer E, Brandt A, Peters S, van Staveren M, Dirkse W, Mooijman P, Klein Lankhorst R, Rose M, Hauf J, Koetter P, Berneiser S, Hempel S, Feldpausch M, Lamberth S, Van den Daele H, De Keyser A, Buysshaert C, Gielen J, Villarroel R, De Clercq R, Van Montagu M, Rogers J, Cronin A, Quail M, Bray-Allen S, Clark L, Doggett J, Hall S, Kay M, Lennard N, McLay K, Mayes R, Pettett A, Rajandream M-A, Lyne M, Benes V, Rechmann S, Borkova D, Blöcker H, Scharfe M, Grimm M, Löhnert T-H, Dose S, de Haan M, Maarse AC, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Fartmann B, Granderath K, Dauner D, Herzl A, Neumann S, Argiriou A, Vitale D, Liguori R, Piravandi E, Massenet O, Quigley F, Clabauld G, Mündlein A, Felber R, Schnabl S, Hiller R, Schmidt W, Lecharny A, Aubourg S, Chefdor F, Cooke R, Berger C, Monfort A, Casacuberta E, Gibbons T, Weber N, Vandenbol M, Bargues M, Terol J, Torres A, Perez-Perez A, Purnelle B, Bent E, Johnson S, Tacon D, Jesse T, Heijnen L, Schwarz S, Scholler P, Heber S, Francs P, Bielke C, Frishman D, Haase D, Lemcke K, Mewes H-W, Stocker S, Zaccaria P, Bevan M, Wilson RK, de la Bastide M, Habermann K, Parnell L, Dedhia N, Gnoj L, Schutz K, Huang E, Spiegel L, Sekhon M, Murray J, Sheet P, Cordes M, Abu-Threideh J, Stoneking T, Kalicki J, Graves T, Harmon G, Edwards J, Latreille P, Courtney L, Cloud J, Abbott A, Scott K, Johnson D, Minx P, Bentley D, Fulton B, Miller N, Greco T, Kemp K, Kramer J, Fulton L, Mardis E, Dante M, Pepin K, Hillier L, Nelson J, Spieth J, Ryan E, Andrews S, Geisel C, Layman D, Du H, Ali J, Berghoff A, Jones K, Drone K, Cotton M, Joshu C, Antonoiu B, Zidanic M, Strong C, Sun H, Lamar B, Yordan C, Ma P, Zhong J, Preston R, Vil D, Shekher M, Matero A, Shah R, Swaby IK, O’Shaughnessy A, Rodriguez M, Hoffman J, Till S, Granat S, Shohdy N, Hasegawa A, Hameed A, Lodhi M, Johnson A, Chen E, Marra M, Martienssen R, McCombie WR (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer H, Huss M, Schmid R, Harvey WR, Wieczorek H (1999) A novel insect V-ATPase subunit M9.7 is glycosylated extensively. J Biol Chem 274:17372–17378

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer H, Reineke S, Zhao X-F, Jacobmeier B, Harvey WR, Wieczorek H (2000) The multigene family of the tobacco hornworm V-ATPase: novel subunits a, C, D, H and putative isoforms. Biochim Biophys Acta 1467:369–379

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Takeyasu K, Sato MH (2001) Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol 46:185–192

    Article  PubMed  CAS  Google Scholar 

  • Moriyama Y, Nelson N (1988) The vacuolar H+-ATPase, a proton pump controlled by a slip. In: Stein WD (ed) The ion pumps: structure, function and regulation. Alan R Liss, New York, pp 387–394

    Google Scholar 

  • Müller ML, Irkens-Kiesecker U, Rubinstein B, Taiz L (1996) On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H+-ATPase activities of fruits and epicotyls. J Biol Chem 271:1916–1924

    Article  PubMed  Google Scholar 

  • Müller ML, Irkens-Kiesecker U, Kramer D, Taiz L (1997) Purification and reconstitution of the vacuolar H+-ATPases from lemon fruits and epicotyls. J Biol Chem 272:12762–12770

    Article  PubMed  Google Scholar 

  • Müller ML, Jensen M, Taiz L (1999) The vacuolar H+-ATPase of lemon fruits is regulated by variable H+/ATP coupling and slip. J Biol Chem 274:10706–10716

    Article  PubMed  Google Scholar 

  • Nakamura Y, Kasamo K, Shimosato N, Sakata M, Ohta E (1992) Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ ions. Plant Cell Physiol 32:139–149

    Google Scholar 

  • Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyls of mung bean. Plant Physiol 116:589–597

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K, Mimura T, Ikeda M, Maeshima M (1999) Molecular cloning of the cDNA of vacuolar H+-pyrophosphatase from Chara corallina. Biochim Biophys Acta 1418:245–250

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276:7654–7660

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan ML, Binzel ML, Perez-Prat E, Chen Z, Nelson DE, Singh NK, Bressan RA, Hasegawa PM (1991) NaCl regulation of tonoplast ATPase 70-kilodalton subunit mRNA in tobacco cells. Plant Physiol 97:562–568

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385

    PubMed  CAS  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc Natl Acad Sci USA 87:3503–3507

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Taiz L (1989) The evolution of H+-ATPases. Trends Biochem Sci 14:113–116

    Article  PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1995) A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H+-ATPase. Proc Natl Acad Sci USA 92:497–501

    Article  PubMed  CAS  Google Scholar 

  • Noumi T, Beitran C, Nelson H, Nelson N (1991) Mutational analysis of the yeast vacuolar (H+)-ATPase. Proc Natl Acad Sci USA 88:1938–1942

    Article  PubMed  CAS  Google Scholar 

  • Oberbeck K, Drucker M, Robinson DG (1994) V-ATPase and pyrophosphatase in endomembranes of maize roots. J Exp Bot 45:235–244

    Article  CAS  Google Scholar 

  • Obermeyer G, Sommer A, Bentrup F-W (1996) Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrum. Biochim Biophys Acta 1284:203–212

    Article  PubMed  Google Scholar 

  • Otoch MLO, Sobeira ACM, de Aragão MEF, Orellano EG, Lima MGS, de Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551

    Article  CAS  Google Scholar 

  • Pänke O, Rumber B (1999) Kinetic modeling of rotary CFoF1-ATP synthase: storage of elastic energy during energy transduction. Biochim Biophys Acta 1412:118–128

    Article  PubMed  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  PubMed  CAS  Google Scholar 

  • Parra KJ, Kane PM (1993) Reversible association between the V1 and Vo domains of the yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18:17064–7074

    Google Scholar 

  • Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 275:21761–21767

    Article  PubMed  CAS  Google Scholar 

  • Parry RV, Turner JC, Rea PA (1989) High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. J Biol Chem 264:20025–20032

    PubMed  CAS  Google Scholar 

  • Perera IY, Li X, Sze H (1995) Several distinct genes encode nearly identical 16 kDa pro-teolipids of the vacuolar H+-ATPase from Arabidopsis thaliana. Plant Mol Biol 29:227–244

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer W (1995) Effects of W-7, W-5, Verapamil and Diltiazem on vacuolar proton transport. Comparison of vacuolar H+-ATPase and H+-PPase from roots of Zea mays. Physiol Plant 94:284–290

    Article  Google Scholar 

  • Pope AJ, Leigh RA (1987) Some characteristics of anion transport at the tonoplast of oat roots, determined from the effects of anions on pyrophosphate-dependent proton transport. Planta 172:91–100

    Article  CAS  Google Scholar 

  • Puopolo K, Sczekan M, Magner R, Forgac M (1992) The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. J Biol Chem 267:5175–5176

    Google Scholar 

  • Radermacher M, Ruiz T, Harvey WR, Wieczorek H, Grüber G (1999) Molecular architecture of Manduca sexta V1 ATPase visualised by electron microscopy. FEBS Lett 453:383–386

    Article  PubMed  CAS  Google Scholar 

  • Randall S, Sze H (1987) Probing the catalytic subunit of the tonoplast H+-ATPase from oat roots: binding of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to the 72-kilodalton polypeptide. J Biol Chem 262:7135–7141

    PubMed  CAS  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465:17–36

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak R, Wilkins TA (2000) Energizing the tonoplast. In: Robinson DG, Rogers JC (eds) Annual Plant Review, Sheffield Academic Press, Sheffield, pp 133–173

    Google Scholar 

  • Ratajczak R, Richter J, Lüttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ 17:1101–1112

    Article  CAS  Google Scholar 

  • Ratajczak R, Hille A, Mariaux J-B, Lüttge U (1995) Quantitative stress response of the Vo-V1-ATPase of higher plants detected by immuno-electron microscopy. Bot Acta 108:505–513

    CAS  Google Scholar 

  • Ratajczak R, Fischer-Schliebs E (1997) Control of higher plant activities by electrochemical proton gradients set up by H+ pumps at the plasma membrane and the tonoplast. In: Greppin H, Penel C, Simon P (eds) Travelling shot on plant development. Rochat-Baumann. Imprimerie Nationale, Genève, pp 183–199

    Google Scholar 

  • Ratajczak R, Feussner I, Hause B, Böhm A, Parthier B, Wasternack C (1998) Alterations of V-type H+-ATPase during methyljasmonate-induced senescence in barley (Hordeum vulgare cv. Salomé). J Plant Physiol 152:199–206

    Article  CAS  Google Scholar 

  • Ratajczak R, Hinz G, Robinson DG (1999) Localization of pyrophosphatase in membranes of cauliflower inflorescence cells. Planta 208:205–211

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak R, Pfeifer T, Drobny M, Schnölzer M, Lüttge U (2002) Molecular evidence for the occurrence of H+-transporting V-ATPase subunit D and two different isoforms of subunit E in leaves of the obligate CAM species Kalanchoë daigremontiana. Biol Plant (in press)

    Google Scholar 

  • Rausch T, Ziemann-Roth M, Hilgenberg W (1985) ADP is a competitive inhibitor of ATP-dependent H+-transport in microsomal membranes of Zea mays L. coleoptiles. Plant Physiol 77:881–885

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Kirsch M, Low R, Lehr A, Viereck R, Zhigang A (1996) Salt stress responses of higher plants: the role of proton pumps and Na+/H+-antiporters. J Plant Physiol 148:425–433

    Article  CAS  Google Scholar 

  • Rea PA, Poole RJ (1985) Proton-translocating inorganic pyrophosphatase in red beet (Beta vulgaris L.) tonoplast vesicles. Plant Physiol 77:46–52

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1986) Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiol 81:126–129

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Sanders D (1987) Tonoplast energization: two H+ pumps, one membrane. Physiol Plant 71:131–141

    Article  CAS  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180

    Article  CAS  Google Scholar 

  • Rea PA, Britten CJ, Jennings IR, Calvert CM, Skiera LA, Leigh RA, Sanders D (1992) Regulation of vacuolar H+-pyrophosphatase by free calcium. A reaction kinetic analysis. Plant Physiol 100:1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Reuveni M, Bennett AB, Bressan RA, Hasegawa PM (1990) Enhanced H+ transport capacity and ATP hydrolysis activity of the tonoplast H+-ATPase after NaCl adaptation. Plant Physiol 94:524–530

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG (1996) Pyrophosphatase is not (only) a vacuolar marker. Trends Plant Sci 1:330

    Google Scholar 

  • Robinson DG, Haschke H-P, Hinz G, Höh B, Maeshima M, Marty F (1996) Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta 198:95–103

    CAS  Google Scholar 

  • Robinson DG, Hoppenrath M, Oberbeck K, Luykx P, Ratajczak R (1998) Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii. Bot Acta 111:108–122

    CAS  Google Scholar 

  • Rockel B, Ratajczak R, Becker A, Lüttge U (1994) Changed densities and diameters of intra-membrane tonoplast particles of Mesembryanthemum crystallinum in correlation with NaCl-induced CAM. J Plant Physiol 143:318–324

    Article  CAS  Google Scholar 

  • Rockel B, Lüttge U, Ratajczak R (1998) Changes in message amount of V-ATPase subunits during salt-stress induced C3-CAM transition in Mesembryanthemum crystallinum. Plant Physiol Biochem 36:567–573

    Article  CAS  Google Scholar 

  • Rodrigues CO, Scott DA, Docampo R (1999) Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovari and its localisation to a different compartment from the vacuolar H+-ATPase. Biochem J 340:759–766

    Article  PubMed  CAS  Google Scholar 

  • Ros R, Romieu C, Gibrat R, Grignon C (1995) The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. J Biol Chem 270:4368–4374

    Article  PubMed  CAS  Google Scholar 

  • Rouquié D, Tournaire-Roux C, Szponarski W, Rossignol M, Doumas P (1998) Cloning of the V-ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett 437:287–292

    Article  PubMed  Google Scholar 

  • Sagermann M, Stevens TH, Matthews BW (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98:7134–7139

    Article  PubMed  CAS  Google Scholar 

  • Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Blöcker H, Perez-Alonso M, Obermaier B, Delseny M, Boutry M, Grivell LA, Mache R, Puigdomènech P, De Simone V, Choisne N, Artiguenave F, Robert C, Brottier P, Wincker P, Cattolico L, Weissenbach J, Saurin W, Quétier F, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Benes V, Wurmbach E, Drzonek H, Erfle H, Jordan N, Bangert S, Wiedelmann R, Kranz H, Voss H, Holland R, Brandt P, Nyakatura G, Vezzi A, D’Angelo M, Pallavicini A, Toppo S, Simionati B, Conrad A, Hornischer K, Kauer G, Löhnen T-H, Nordsiek G, Reichelt J, Scharfe M, Schön O, Bargues M, Terol J, Climent J, Navarro P, Collado C, Perez-Perez A, Ottenwälder B, Duchemin D, Cooke R, Laudie M, Berger-Llauro C, Purnelle B, Masuy D, de Haan M, Maarse AC, Alcaraz J-P, Cottet A, Casacuberta E, Monfort A, Argiriou A, Flores M, Liguori R, Vitale D, Mannhaupt G, Haase D, Schoof H, Rudd S, Zaccaria P, Mewes H-W, Mayer KFX, Kaul S, Town CD, Koo HL, Talion LJ, Jenkins J, Rooney T, Rizzo M, Walts A, Utterback T, Fujii CY, Shea TP, Creasy TH, Haas B, Maiti R, Wu D, Peterson J, Van Aken S, Pai G, Militscher J, Sellers P, Gill JE, Feldblyum TV, Preuss D, Lin X, Nierman WC, Salzberg SL, White O, Venter JC, Fraser CM, Kaneko T, Nakamura Y, Sato S, Kato T, Asamizu E, Sasamoto S, Kimura T, Idesawa K, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408:820–822

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara Y, Kobayashi H, Kasamo K (1996) Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphatase isoforms from rice (Oryza sativa L.). Plant Mol Biol 31:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Sarafian V, Potier M, Poole RJ (1992) Radiation-inactivation analysis of vacuolar H+-ATPase and H+-pyrophosphatase from Beta vulgaris L. Biochem J 283:493–497

    PubMed  CAS  Google Scholar 

  • Sato MH, Maeshima M, Ohsumi Y, Yoshida M (1991) Dimeric structure of H+-translocating pyrophosphatase from pumpkin vacuolar membranes. FEBS Lett 290:177–180

    Article  PubMed  CAS  Google Scholar 

  • Sato MH, Kasahara M, Ishii N, Homareda H, Matsui H, Yoshida M (1994) Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem 269:6725–6728

    PubMed  CAS  Google Scholar 

  • Scherer GFE, Martiny-Baron G, Stoffel B (1988) A new set of regulatory molecules in plants: a plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton translocating ATPase in membrane vesicles. Planta 175:241–253

    Article  CAS  Google Scholar 

  • Schmidt AL, Briskin DP (1993) Energy transduction in tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue: H+/substrate stoichiometries for the H+-ATPase and H+-PPase. Arch Biochem Biophys 301:165–173

    Article  PubMed  CAS  Google Scholar 

  • Schocke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594

    Article  PubMed  CAS  Google Scholar 

  • Schoonderwoert VTG, Martens GJM (2001) Proton pumping in the secretory pathway. J Membr Biol 182:159–169

    Article  PubMed  CAS  Google Scholar 

  • Scott DA, de Souza W, Benchimol M, Zhong L, Lu HG, Moreno SN, Docampo R (1998) Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem 273:22151–22158

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, MacRobbie EAC (1987) Demonstration of two proton translocating systems in tonoplast of permeabilized Nitella cells. Protoplasma 136:205–207

    Article  CAS  Google Scholar 

  • Shiratake K, Kanayama Y, Maeshima M, Yamaki S (1997) Changes in H+-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol 38:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Sikora A, Hillmer S, Robinson DJ (1998) Sucrose starvation causes a loss of immunologically detectable pyrophosphatase and V-ATPase in the tonoplast of suspension-cultured tobacco cells. J Plant Physiol 152:207–212

    Article  CAS  Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 116:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Smith JAC, Marigo G, Lüttge U, Ball E (1982) Adenine-nucleotide levels during crassulacean acid metabolism and the energetics of malate accumulation in Kalanchoë tubiflora. Plant Sci Lett 26:13–21

    Article  CAS  Google Scholar 

  • Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779–808

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1987) Fructose 2,6-bisphosphate and plant carbohydrate metabolism. Plant Physiol 84:201–204

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1998) Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Bot Acta 111:167–175

    CAS  Google Scholar 

  • Supek F, Supekova L, Mandiyan S, Pan YC, Nelson H, Nelson N (1994) A novel accessory subunit for vacuolar H+-ATPase from chromaffin granules. J Biol Chem 269:24102–24106

    PubMed  CAS  Google Scholar 

  • Supekova L, Supek F, Nelson N (1995) The Saccharomyces cerevisiae vma10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H+-ATPase. J Biol Cem 270:13726–13732

    Article  CAS  Google Scholar 

  • Supekova L, Sbia M, Supek F, Ma Y-M, Nelson N (1996) A novel subunit of vacuolar H+-ATPase related to the b subunit of F-ATPases. J Exp Biol 199:1147–1156

    PubMed  CAS  Google Scholar 

  • Suzuki K, Kasamo K (1993) Effects of aging on the ATP-and pyrophosphate-dependent pumping of protons across the tonoplast isolated from pumpkin cotyledons. Plant Cell Physiol 34:613–619

    CAS  Google Scholar 

  • Suzuki Y, Maeshima M, Yamaki S (1999) Molecular cloning of vacuolar H+-pyrophosphatase and its expression during the development of pear fruit. Plant Cell Physiol 40:900–904

    Article  PubMed  CAS  Google Scholar 

  • Swanson SJ, Jones RL (1996) Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell 8:2211–2221

    PubMed  CAS  Google Scholar 

  • Sze H, Ward JM, Lai S (1992) Vacuolar H+-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr 24:371–381

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Xuhang L, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    PubMed  CAS  Google Scholar 

  • Tavakoli N, Eckerskorn C, Golldack D, Dietz K-J (1999) Subunit C of the vacuolar H+-ATPase of Hordeum vulgare. FEBS Lett 456:68–72

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz KJ (2001) Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28:51–59

    Article  PubMed  CAS  Google Scholar 

  • Terrier N, Deguilloux C, Sauvage F-X, Martinoia E, Romieu C (1998) Proton pumps and anion transport in grape berries (Vitis vinifera L.): the inorganic pyrophosphatase plays a predominant role in energization of the tonoplast. Plant Physiol Biochem 36:367–377

    Article  CAS  Google Scholar 

  • Tomashek JJ, Graham LA, Hutchins MU, Stevens TH, Klionsky DJ (1997) V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem 272:26787–26793

    Article  PubMed  CAS  Google Scholar 

  • Tsiantis MS, Bartholomew DM, Smith JAC (1996) Salt regulation of transcript levels for the c subunit of a vacuolar H+-ATPase in the halophyte Mesembryanthemum crystallinum. Plant J 9:729–736

    Article  PubMed  CAS  Google Scholar 

  • Tu S-I, Nungesser E, Brauer D (1989) Characterization of the effects of divalent cations on the coupled activities of the H+-ATPase in tonoplast vesicles. Plant Physiol 90:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Tzeng CM, Yang CY, Yang SJ, Jiang SS, Kuo SY, Hung SH, Ma JT, Pan RL (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem J 316:143–147

    PubMed  CAS  Google Scholar 

  • Ubbink-Kok T, Boekema EJ, van Breemen JFL, Brisson A, Konings WN, Lolkema JS (2000) Stator structure and subunit composition of the V1/Vo Na+-ATPase of the thermophilic bacterium Caloramator fervidus. J Mol Biol 296:311–321

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–435

    Article  PubMed  CAS  Google Scholar 

  • Vianello A, Zancani M, Bradiot E, Petrussa E, Macri F (1991) Proton pumping inorganic pyrophosphatase of pea stem submitochondrial particles. Biochim Biophys Acta 1060:299–302

    Article  CAS  Google Scholar 

  • Viereck R, Kirsch M, Low R, Rausch T (1996) Down-regulation of plant V-type H+-ATPase genes after light-induced inhibition of growth. FEBS Lett 384:285–288

    Article  PubMed  CAS  Google Scholar 

  • Walker RR, Leigh RA (1981) Mg-dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beets (Beta vulgaris L.). Planta 153:150–155

    Article  CAS  Google Scholar 

  • Wang B, Lüttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    Article  PubMed  CAS  Google Scholar 

  • Wang BS, Ratajczak R, Zhang JH (2000) Activity, amount and subunit composition of vacuolar-type H+-ATPase and H+-PPase in wheat roots under severe NaCl stress. J Plant Physiol 157:109–166

    Article  CAS  Google Scholar 

  • Wang SY, Moriyama Y, Mandel M, Hulmes JD, Pan YC, Danho W, Nelson H, Nelson N (1988) Cloning of cDNA encoding a 32-kDa protein. An accessory polypeptide of the H+-ATPase from chromaffin granules. J Biol Chem 263:17638–17642

    PubMed  CAS  Google Scholar 

  • Wang Y, Sze H (1985) Similarities and differences between the tonoplast-type and the mitochondrial H+-ATPases of oat roots. J Biol Chem 260:10434–10443

    PubMed  CAS  Google Scholar 

  • Ward JM, Sze H (1992) Subunit composition and organization of the vacuolar H+-ATPase from oat roots. Plant Physiol 99:170–179

    Article  PubMed  CAS  Google Scholar 

  • Warren M, Smith JAC, Apps DK (1992) Rapid purification and reconstitution of a plant vacuolar ATPase using Triton X-114 fractionation: subunit composition and substrate kinetics of the H+-ATPase from the tonoplast of Kalanchoë daigremontiana. Biochim Biophys Acta 1106:117–125

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Senior AE (1997) Catalytic mechanism of F1-ATPase. Biochim Biophys Acta 1319:19–58

    Article  PubMed  CAS  Google Scholar 

  • Weiner H, Stitt M, Heidt HW (1987) Subcellular compartmentation of pyrophosphate and alkaline phosphatase in leaves. Biochim Biophys Acta 893:13–21

    Article  CAS  Google Scholar 

  • White PJ, Marshall J, Smith JA (1990) Substrate kinetics of the tonoplast H+-translocating inorganic pyrophosphatase and its activation by free Mg2+. Plant Physiol 93:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Wilkens S, Capaldi RA (1998) Electron microscopic evidence of two stalks linking the F1 and Fo parts of the Escherichia coli ATP synthase. Biochim Biophys Acta 1365:93–97

    Article  PubMed  CAS  Google Scholar 

  • Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Nelson SJ, Hall JL (1992) Characterization of solute transport in plasma-membrane vesicles isolated from cotelydons of Ricinus communis L. I. Adenosine triphosphatase and pyrophosphatase activities associated with plasma-membrane fraction isolated by phase partitioning. Planta 182:532–539

    Article  Google Scholar 

  • Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. In: Leigh RA, Sanders D (eds) The plant vacuole. Advances in botanical research, vol 25. Academic Press, San Diego, pp 141–169

    Google Scholar 

  • Xu T, Vasilyeva E, Forgac M (1999) Subunit interactions in the clathrin-coated vesicle vacuolar (H+)-ATPase complex. J Biol Chem 274:28909–28915

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi M, Kasamo K (1992) Binding of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to an essential cysteine residue(s) in the tonoplast H+-ATPase from mung bean (Vigna radiata L.) hypocotyls. Plant Physiol 99:652–658

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi M, Kasamo K (1993) Modulation of activity of purified tonoplast H+-ATPase from mung bean (Vigna radiata L.) hypocotyls by various phospholipids. Plant Cell Physiol 34:411–419

    CAS  Google Scholar 

  • Yamanishi M, Kasamo K (1994) Effect of cerebroside and cholesterol on reconstitution of purified tonoplast H+-ATPase from mung bean (Vigna radiata L.) hypocotyls in liposomes. Plant Cell Physiol 35:655–663

    CAS  Google Scholar 

  • Yamanishi M, Kasamo K (2001) Modulation in activity of purified tonoplast H+-ATPase by tonoplast glycolipids prepared from cultured rice (Oryza sativa L. var. Boro) cells. Plant Cell Physiol 42:516–523

    Article  Google Scholar 

  • Yazaki Y, Asukagawa N, Ishikawa Y, Ohta E, Sakata M (1988) Estimation of cytoplasmic free Mg2+ levels and phosporylation potentials in mung bean root tips by in vivo 31P NMR spectroscopy. Plant Cell Physiol 29:919–924

    CAS  Google Scholar 

  • Yoshida S (1991) Chilling-induced inactivation and its recovery of tonoplast H+-ATPase in mung bean cell suspension cultures. Plant Physiol 95:456–460

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Myers M, Forgac M (1992) Characterization of the Vo domain of the coated vesicle (H+)-ATPase. J Biol Chem 267:9773–9778

    PubMed  CAS  Google Scholar 

  • Zhang JM, Feng Y, Forgac M (1994) Proton conduction and bafilomycin binding by the Vo domain of the coated vesicle V-ATPase. J Biol Chem 269:23518–23523

    PubMed  CAS  Google Scholar 

  • Zhen R-G, Kim EJ, Rea PA (1997) The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. In: Leigh RA, Sanders D (eds) The plant vacuole. Advances in botanical research, vol 25. Academic Press, Oxford, pp 298–337

    Google Scholar 

  • Zhigang A, Low R, Rausch T, Lüttge U, Ratajczak R (1996) The 32 kDa tonoplast polypeptide D i associated with the V-type H+-ATPase of Mesembryanthemum crystallinum L. in the CAM state: a proteolytically processed subunit B? FEBS Lett 389:314–318

    Article  PubMed  CAS  Google Scholar 

  • Zingarelli L, Anzani P, Lado P (1994) Enhanced K+-stimulated pyrophosphatase activity in NaCl-adapted cells of Acer pseudoplantanus. Physiol Plant 91:510–516

    Article  CAS  Google Scholar 

  • Zocchi G (1985) Phosphorylation-dephosphorylation of membrane proteins controls the microsomal H+-ATPase activity of corn roots. Plant Sci 40:153–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

In memory of Rafael Ratajczak whose research was on V-ATPase and V-PPase. He died on 18 May, 2002.

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drobny, M., Fischer-Schliebs, E., Lüttge, U., Ratajczak, R. (2003). Coordination of V-ATPase and V-PPase at the Vacuolar Membrane of Plant Cells. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55819-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55819-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62838-2

  • Online ISBN: 978-3-642-55819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics