Skip to main content

Circadian Rhythmicity: Is the “Biological Clock” Hardware or Software?

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 64))

Abstract

Awareness of the influence of external rhythms such as seasons, Tides and the solar day on organisms, Plants and animals including humans, dates back to the early advent of human culture (Waterhouse 2001). One of the earliest demonstrations of an intrinsic or endogenous free-running daily rhythm in organisms is often acknowledged to be that of the nyctinastic day/night movements of the pinnulae of leaves of the higher plant Mimosa by (1729). Pioneers of higher-plant chronobiology are Wilhelm Pfeffer (1845–1920) and Erwin Bünning (1906–1990). Notwithstanding much work producing a wealth of evidence, even in the latter half of the twentieth century, It often occurred — as occasionally mentioned by Erwin Bünning—that the notion of a “biological clock” was associated with parascience. As recently as 1989 one could still read that biorhythmicity and the “biological clock” belonged to the field of parabiology together with fire-walking, The divining rod, And the like (Resch 1989). Conversely, International societies and journals of chronobiology were founded, And indeed occurrence of endogenous “daily” rhythmicity in organisms including green organisms such as the prokaryotic cyanobacteria, Eukaryotic unicellular and multicellular algae and higher plants is now a solid fact.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Cashmore AR (1993) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30:851–861

    Google Scholar 

  • Amzallag GN (2001) Data analysis in plant physiology: are we missing the reality? Plant Cell Environ 24:881–890

    CAS  Google Scholar 

  • Anderson CM, Wilkins MB (1989a) Period and phase control by temperature in the circadian rhythm of carbon dioxide fixation in illuminated leaves of Bryophyllum fedtschenkoi. Planta 177:456–469

    CAS  Google Scholar 

  • Anderson CM, Wilkins MB (1989b) Phase resetting of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves in relation to their malate content following brief exposure to high and low temperatures, Darkness and 5% carbon dioxide. Planta 180:61–73

    CAS  Google Scholar 

  • Andersen PC, Brodbeck BV, Mizell RF (1993) Diurnal variations of amino acids and organic acids in xylem fluid from Lagerstroemia indica: an endogenous circadian rhythm. Physiol Plant 89:783–790

    CAS  Google Scholar 

  • Applewhite PB, Satter RL, Galston AW (1973) Protein synthesis during endogenous rhythmic leaflet movement in Albizzia. J Gen Physiol 62:707–713

    PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal-transduction in guard cells. Annu Rev Cell Biol 9:345–375

    PubMed  CAS  Google Scholar 

  • Barak S, Tobin EM, Andronis C, Sugano S, Green RM (2000) All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5:517–522

    PubMed  CAS  Google Scholar 

  • Beator J, Kloppstech K (1993) The circadian oscillator coordinates the synthesis of apoproteins and their pigments during chlorophyll development. Plant Physiol 103:191–196

    PubMed  CAS  Google Scholar 

  • Beator J, Pötter E, Kloppstech K (1992) The effect of heat shock on morphogenesis in barley. Coordinated circadian regulation of mRNA levels for light-regulated genes and of the capacity for accumulation of chlorophyll protein complexes. Plant Physiol 100:1780–1786

    PubMed  CAS  Google Scholar 

  • Beck F, Blasius B, Lüttge U, Neff R, Rascher U (2001) Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour. Proc R SocB 268:1307–1313

    CAS  Google Scholar 

  • Beyschlag W, Eckstein J (1997) Stomatal patchiness. Progress in Botany 59. Springer, Berlin Heidelberg New York, Pp 283–298

    Google Scholar 

  • Białczyk J, Lechowski Z (1987) The effect of abscisic acid and fusicoccin on malic acid concentration in pulvini of Phaseolus coccineus L. New Phytol 105:469–475

    Google Scholar 

  • Blasius B (1997) Rhythmus und CAM, Zeitreihenanalyse und Modellierung regulärer und irregulärer Photosyntheseoszillationen bei CAM-Pflanzen. PhD Thesis, TU Darmstadt, Darmstadt, Germany

    Google Scholar 

  • Blasius B, Beck F, Lüttge U (1997) A model for photosynthetic oscillations in crassulacean acid metabolism (CAM). J Theor Biol 184:345–351

    CAS  Google Scholar 

  • Blasius B, Beck F, Lüttge U (1998) Oscillatory model of crassulacean acid metabolism: structural analysis and stability boundaries with a discrete hysteresis switch. Plant Cell Environ 21:775–784

    CAS  Google Scholar 

  • Blasius B, Neff R, Beck F, Lüttge U (1999) Oscillatory model of crassulacean acid metabolism with a dynamic hysteresis switch. Proc R Soc B 266:93–101

    CAS  Google Scholar 

  • Bohn A, Geist A, Rascher U, Lüttge U (2001) Responses to different external light rhythms by the circadian rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Plant Cell Environ 24:811–820

    CAS  Google Scholar 

  • Bohn A, Rascher U, Hütt MT, Kaiser F, Lüttge U (2002) Responses of a plant circadian rhythm to thermoperiodic perturbations with asymmetric temporal patterns and the rate of temperature change. Biol Rhythm Res (in press)

    Google Scholar 

  • Bollig I (1977) Different circadian rhythms regulate photoperiodic flowering response and leaf movement in Pharbitis nil (L.) Choisy. Planta 135:137–142

    Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Plant Physiol 121:889–896

    PubMed  CAS  Google Scholar 

  • Boxall SF, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2001) The circadian clock and crassulacean acid metabolism in Mesembryanthemum crystallinum. Poster S18-D12. 12th International Congress of Photosynthesis, Brisbane

    Google Scholar 

  • Brinker M, Engelmann W, Piechulla B (2001) Circadian rhythms of leaf movement in Gymnosperm species. Biol Rhythm Res 32:467

    Google Scholar 

  • Britz SJ, Hungerford WE, Lee DR (1987) Rhythms during extended dark periods determine rates of net photosynthesis and accumulation of starch and soluble sugars in subsequent light periods of Sorghum. Planta 171:339–345

    CAS  Google Scholar 

  • Buchanan-Bollig IC (1984) Circadian rhythms in Kalanchoë: effects of irradiance and temperature on gas exchange and carbon metabolism. Planta 160:264–271

    CAS  Google Scholar 

  • Buchanan-Bollig IC, Fischer A, Kluge M (1984) Circadian rhythms in Kalanchoë: the pathway of 14CO2 fixation during prolonged light. Planta 161:71–80

    CAS  Google Scholar 

  • Bünning E (1935) Zur Kenntnis der erblichen Tagesperiodizität bei den Primärblättern von Phaseolus multiflorus. Jahrb Wiss Bot 81:411–418

    Google Scholar 

  • Bünning E (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  • Bünning E (1973) The physiological clock. Circadian rhythms and biological chronometry. The English Universities Press Ltd, London; Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bünning E, Moser I (1972) Influence of valinonmycin on circadian leaf movements of Phaseolus. Proc Natl Acad Sci USA 69:2732–2733

    PubMed  Google Scholar 

  • Bünsow R (1953) Endogene Tagesrhythmik und Photoperiodismus bei Kalanchoë blossfeldiana. Planta 42:220–252

    Google Scholar 

  • Carter PJ, Nimmo HG, Fewson CA, Wilkins MB (1991) Circadian rhythms in the activity of a plant protein kinase. EMBO J 10:2063–2068

    PubMed  CAS  Google Scholar 

  • Carter PJ, Wilkins MB, Nimmo HG, Fewson CA (1995a) Effects of temperature on the activity of phosphoenolpyruvate carboxylase and on the control of CO2 fixation in Bryophyllum fedtschenkoi. Planta 196: 375–380

    CAS  Google Scholar 

  • Carter PJ, Wilkins MB, Nimmo HG, Fewson CA (1995b) The role of temperature in the regulation of the circadian rhythm of CO2 fixation in Bryophyllum fedtschenkoi. Planta 196:381–386

    CAS  Google Scholar 

  • Carter PJ, Fewson CA, Nimmo GA, Nimmo HG, Wilkins MB, (1996) Roles of circadian rhythms, Light and temperature in the regulation of phosphoenolpyruvate carboxylase in crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry, Ecophysiology and evolution. Ecological Studies, vol 114. Springer, Berlin Heidelberg New York, Pp 46–52

    Google Scholar 

  • Cermakian N, Sassone-Corsi P (2001) Rythmes biologiques: les secrets d’une horloge. La Recherche 338:38–42

    Google Scholar 

  • Chen HM, Chien CY, Huang TC (1996) Regulation and molecular structure of a circadian oscillating protein located in the cell membrane of the prokaryote Synechococcus RF-1. Planta 199:520–527

    PubMed  CAS  Google Scholar 

  • Chen TH, Chen TL, Hung LM, Huang TC (1991) Circadian rhythm in amino acid uptake by Synechococcus RF-1. Plant Physiol 97:55–59

    PubMed  CAS  Google Scholar 

  • Clark DG, Richards C, Brown KM (1999) Characterization of circadian-regulated mRNAs encoding glycine-rich RNA-binding proteins in Pelargonium × hortorum. Physiol Plant 106:409–414

    CAS  Google Scholar 

  • Cohen AS, Cumming BG (1974) Endogenous rhythmic activity of nitrate reductase in a selection of Chenopodium rubrum. Can J Bot 52:2351–2360

    CAS  Google Scholar 

  • Comolli J, Taylor W, Rehman J, Hastings JW (1996) Inhibitors of serine/threonine phosphoprotein phosphatases alter circadian properties in Gonyaulax polyedra. Plant Physiol 111:285–291

    PubMed  CAS  Google Scholar 

  • Coté GG, DePass AL, Quarmby LM, Tate BF, Morse MJ, Satter RL, Crain RC (1989) Separation and characterisation of inositol phospholipids from the pulvini of Samanea saman. Plant Physiol 90:1422–1428

    PubMed  Google Scholar 

  • Couderchet J, Girard D (1976) Débit et teneur en potassium de la sève émise par des racines excisées d’Helianthus annuus L. C R Acad Sci Paris 282 Série D:173–176

    Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315

    PubMed  CAS  Google Scholar 

  • Czihak G, Langner H, Ziegler H (1990) Biologie, 4. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Daido H (2001) Why circadian rhythms are circadian: competitive population dynamics of biological oscillators. Phys Rev Lett 87: 048101-1-048101-4

    Google Scholar 

  • Deitzer GF, Kempf O, Fischer S, Wagner E (1974) Endogenous rhythmicity and energy transduction. IV. Rhythmic control of enzymes involved in tricarboxylic-acid cycle and the oxidative pentose-phosphate pathway in Chenopodium rubrum L. Planta 117:29–41

    CAS  Google Scholar 

  • De Mairan J (1729) Observation botanique. In: Histoire de l’Académie Royale des Sciences, pp 35–36

    Google Scholar 

  • Deng TS, Roenneberg T (1997) Photobiology of the Gonyaulax circadian system. II. Allopurinol inhibits blue-light effects. Planta 202:502–509

    CAS  Google Scholar 

  • Deng MD, Moureaux T, Leydecker MT, Caboche M (1990) Nitrate-reductase expression is under the control of a circadian rhythm and is light-inducible in Nicotiana tabaccum leaves. Planta 180:257–261

    CAS  Google Scholar 

  • Doerner PW (1994) Cell cycle regulation in plants. Plant Physiol 106:823–827

    PubMed  CAS  Google Scholar 

  • Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    PubMed  CAS  Google Scholar 

  • Dunlap JC (1993) Genetic analysis of circadian clocks. Annu Rev Physiol 55:683–728

    PubMed  CAS  Google Scholar 

  • Edmunds LN, Tamponnet C (1990) Oscillator control of cell division cycles in Euglena: role of calcium in circadian time-keeping. In: O’Day DH (ed) Calcium as an intracellular messenger in eucaryotic microbes. Am Soc Microbiol, Washington, DC, Pp 97–123

    Google Scholar 

  • Engelmann W, Johnsson A (1998) Rhythms in organ movement. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, pp 35–50

    Google Scholar 

  • Engelmann W, Simon K, Phen CJ (1992) Leaf movement rhythm in Arabidopsis thaliana. Z Naturforsch 47c:925–928

    Google Scholar 

  • Erath F, Rüge WA, Mayer WE, Hampp R (1988) Isolation of functional extensor and flexor protoplasts from Phaseolus coccineus L. pulvini: potassium induced swelling. Planta 173:447–452

    CAS  Google Scholar 

  • Everat-Bourbouloux A, Fleurat-Lessard P, Roblin G (1990) Comparative effects of indole-3-acetic acid, Abscisic acid, Gibberellic acid and 6-benzylaminopurine on the dark-and light-induced pulvinar movements in Cassia fasciculata Michx. J Exp Bot 41:315–324

    CAS  Google Scholar 

  • Finlayson SA, Lee IJ, Morgan PW (1998) Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiol 116:17–25

    CAS  Google Scholar 

  • Finlayson SA, Lee IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Bouché-Pillon S, Leloup C, Bonnemain JL (1997a) Distribution and activity of the plasma membrane H+-ATPase in Mimosa pudica L. in relation to ionic fluxes and leaf movements. Plant Physiol 113:747–754

    PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Frangne N, Maeshima M, Ratajczak R, Bonnemain JL, Martinoia E (1997b) Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function in Mimosa pudica L. Plant Physiol 114:827–834

    PubMed  CAS  Google Scholar 

  • Foster KR, Morgan PW (1995) Genetic regulation of development in Sorghum bicolor. IX. The maR 3 allele disrupts diurnal control of gibberellin biosynthesis. Plant Physiol 108:337–343

    PubMed  CAS  Google Scholar 

  • Francis D, Haiford NG (1995) The plant cell cycle. Physiol Plant 93:365–374

    CAS  Google Scholar 

  • Fredeen AL, Hennessey TL, Field CB (1991) Biochemical correlates of the circadian rhythm in photosynthesis in Phaseolus vulgaris. Plant Physiol 97:415–419

    PubMed  CAS  Google Scholar 

  • Freudling C, Mayer WE, Gradmann D (1980) Electrical membrane properties and circadian rhythm in extensor cells of the laminar pulvini of Phaseolus coccineus L. Plant Physiol 65:966–968

    PubMed  CAS  Google Scholar 

  • Freudling C, Starrach N, Flach D, Gradmann D, Mayer WE (1988) Cell walls as reservoirs of potassium ions for reversible volume changes of pulvinar motor cells during rhythmic leaf movements. Planta 175:193–203

    Google Scholar 

  • Friesen WO, Block GD, Hocker CG (1993) Formal approaches to understanding biological oscillations. Annu Rev Physiol 55:661–681

    PubMed  CAS  Google Scholar 

  • Frosch S, Wagner E (1973a) Endogenous rhythmicity and energy transduction. II. Phytochrome action and the conditioning of rhythmicity of adenylate kinase, NAD-and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum by temperature and light intensity cycles during germination. Can J Bot 51:1521–1528

    CAS  Google Scholar 

  • Frosch S, Wagner E (1973b) Endogenous rhythmicity and energy transduction. III. Time course of phytochrome action in adenylate kinase, NAD-and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum. Can J Bot 51:1529–1535

    CAS  Google Scholar 

  • Frosch S, Wagner E, Cumming BG (1973) Endogenous rhythmicity and energy transduction. I. Rhythmicity in adenylate kinase, NAD-and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum. Can J Bot 51:1355–1367

    Google Scholar 

  • Fujiwara S, Ishida N, Tsuzuki M (1996) In Chlamydomonas reinhardtii. Plant Mol Biol 32:745–749

    PubMed  CAS  Google Scholar 

  • Genoud T, Trevino Santa Cruz MB, Métraux JP (2001) Numeric simulation of plant signaling networks. Plant Physiol 126:1430–1437

    PubMed  CAS  Google Scholar 

  • Gierer A (1998) Im Spiegel der Natur erkennen wir uns selbst. Wissenschaft und Menschenbild. Rowohlt, Hamburg

    Google Scholar 

  • Giuliano G, Hoffman NE, Ko K, Scolnik PA, Cashmore AR (1988) A light-entrained circadian clock controls transcription of several plant genes. EMBO J 7:3635–3642

    PubMed  CAS  Google Scholar 

  • Golden SS, Strayer C (2001) Time for plants. Progress in plant chronobiology. Plant Physiol 125:98–101

    PubMed  CAS  Google Scholar 

  • Golden SS, Ishiura M, Johnson CH, Kondo T (1997) Cyanobacterial circadian rhythms. Annu Rev Plant Physiol Plant Mol Biol 48:327–354

    PubMed  CAS  Google Scholar 

  • Gonze D, Leloup JC, Goldbeter A (2000) Theoretical models for circadian rhythms in Neurospora and Drosophila. C R Acad Sci Paris Sci de la vie 323:57–67

    CAS  Google Scholar 

  • Gooch van D, Wehseier RA, Gross CG (1994) Temperature effects on the resetting of the phase of the Neurospora circadian rhythm. J Biol Ryhthm 9:83–94

    CAS  Google Scholar 

  • Gorton HL (1990) Stomates and pulvini: a comparison of two rhythmic, Turgor-mediated movement systems. In: Satter RL, Gorton HL et al. (eds) The pulvinus: motor organ for leaf movement. The American Society of Plant Physiologists, Rockville, MD, pp 223–237

    Google Scholar 

  • Gorton HL, Williams WE, Binns ME, Gemmell CN, Leheny EA, Shepherd AC (1989) Circadian stomatal rhythms in epidermal peels from Vicia faba. Plant Physiol 90:1329–1334

    PubMed  CAS  Google Scholar 

  • Gorton HL, Williams WE, Assmann SM (1993) Circadian rhythms in stomatal responsiveness to red and blue light. Plant Physiol 103:399–406

    PubMed  CAS  Google Scholar 

  • Goto R, Kane R, Morishita M, Nakashia H (1994) Effect of temperature on the circadian conidiation rhythm of temperature-sensitive mutants of Neurospora crassa. Plant Cell Physiol 35:613–618

    CAS  Google Scholar 

  • Grams TEE, Kluge M, Lüttge U (1995) High temperature adapted plants of Kalanchoë daigremontiana show changes in temperature dependence of the endogenous CAM rhythm. J Exp Bot 46:1927–1929

    CAS  Google Scholar 

  • Grams TEE, Beck F, Lüttge U (1996) Generation of rhythmic and arrhythmic behaviour of crassulacean acid metabolism in Kalanchoë daigremontiana under continuous light by varying the irradiance or temperature: measurements in vivo and model simulations. Planta 198:110–117

    CAS  Google Scholar 

  • Grams TEE, Borland AM, Roberts A, Griffiths H, Beck F, Lüttge U (1997) On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm by temperature changes. Plant Physiol 113:1309–1317

    PubMed  CAS  Google Scholar 

  • Granbom M, Pedersén M, Lüning K (2001) A circadian rhythm of photosynthesis in the red macroalga Kappaphycus alvarezii. Biol Rhythm Res 32:460

    Google Scholar 

  • Hänggi P (2001) Stochastische Resonanz: Rauschen macht sensibel. Physikalische Blätter 57:15–16

    Google Scholar 

  • Hall A, Kozma-Bognár L, Tóth R, Nagy F, Miliar AJ (2001) Conditional circadian regulation of phytochrome A gene expression. Plant Physiol 127:1808–1818

    PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    PubMed  CAS  Google Scholar 

  • Hartwell J, Smith LH, Wilkins MB, Jenkins GI, Nimmo HG (1996) Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10:1071–1078

    CAS  Google Scholar 

  • Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20:333–342

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402 Supp:C47–C52

    PubMed  CAS  Google Scholar 

  • Heintzen C, Fischer R, Melzer S, Kappeler S, Apel K, Staiger D (1994a) Circadian oscillation of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant Sinapis alba L. Plant Physiol 106:905–915

    PubMed  CAS  Google Scholar 

  • Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994b) A light-entrained and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J 5:799–813

    PubMed  CAS  Google Scholar 

  • Heintzen C, Nater M, Apel K, Staiger D (1997) AtGRP7, A nuclear RNA-binding protein, as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:8515–8520

    PubMed  CAS  Google Scholar 

  • Helsper JPFG, Davies JA, Bouwmeester HJ, Krol AF, Van Kampen MH (1998) Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95

    CAS  Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis. Oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiol 96:831–836

    PubMed  CAS  Google Scholar 

  • Hennessey TL, Freeden AL, Field CB (1992) Evidence of multiple circadian oscillators in bean plants. J Biol Rhythms 7:105–113

    PubMed  CAS  Google Scholar 

  • Hennessey TL, Freeden AL, Field CB (1993) Environmental effects of circadian rhythms in photosynthesis and stomatal opening. Planta 189:369–376

    CAS  Google Scholar 

  • Hensel W (1987) Movements of pulvinated leaves. Progress in Botany 49. Springer, Berlin Heidelberg New York, Pp 171–180

    Google Scholar 

  • Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schaffner AR, Steudle E, Clarkson DT (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lupinus japonicus. Planta 210:50–60

    PubMed  CAS  Google Scholar 

  • Hicks KA, Albertson TM, Wagner DR (2001) Early flowering3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13:1281–1292

    PubMed  CAS  Google Scholar 

  • Huang TC, Chen HM, Pen SY, Chen TH (1994) Biological clock in the prokaryote Synechococcus RF-1. Planta 193:131–136

    CAS  Google Scholar 

  • Hütt MT, Neff R (2001) Quantification of spatiotemporal phenomena by means of cellular automata techniques. Physica A 289:498–516

    Google Scholar 

  • Ievinsh G, Kreicbergs (1992) Endogenous rhythmicity of ethylene production in growing intact cereal seedlings. Plant Physiol 100:1389–1391

    PubMed  CAS  Google Scholar 

  • Irving MS, Ritter S, Tomos AD, Koller D (1997) Phototropic response of the bean pulvinus: movement of water and ions. Bot Acta 110:118–126

    CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998 ) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Kondo T (2000) The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol 41: 1013–1020

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T (2000) A KaiC-interacting sensory histidine kinase, SasA, Necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    PubMed  CAS  Google Scholar 

  • Jacobshagen S, Whetstine JR, Boling JM (2001) Many but not all genes in Chlamydomonas reinhardtii are regulated by the circadian clock. Plant Biol 3:592–597

    CAS  Google Scholar 

  • Jaffe MJ (1968) Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science 162:1061–1067

    Google Scholar 

  • Jerebzoff S (1986) Cellular circadian rhythms in plants: recent approaches to their molecular bases. Physiol Vég 24:367–376

    CAS  Google Scholar 

  • Johnson CH (1992) Phase response curves: What can they tell us about circadian clocks? In: Hiroshige T, Honma K (eds) Circadian clocks from cell to human. Hokkaido University Press, Sapporo, Japan, Pp 209–249

    Google Scholar 

  • Johnson CH (2001) Endogenous timekeepers in photosynthetic organisms. Annu Rev Physiol 63:695–728

    PubMed  CAS  Google Scholar 

  • Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409

    PubMed  CAS  Google Scholar 

  • Johnson CH, Roeber JF, Hastings JW (1984) Circadian changes in enzyme concentration account for rhythm of enzyme activity in Gonyaulax. Science 223:1428–1430

    PubMed  CAS  Google Scholar 

  • Johnson CH, Kondo T, Goto K (1992) Circadian rhythms in Chlamydomonas: In: Hiroshige T, Homna K (eds) Circadian clocks from cell to human. Hokkaido Press, Sap-poro, Japan, Pp 139–155

    Google Scholar 

  • Johnson CH, Knight MR, Kondo T, Masson P, Seedbrook J, Haley A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–1865

    PubMed  CAS  Google Scholar 

  • Johnson CH, Knight M, Trewavas A, Kondo T (1998) A clockwork green: circadian programs in photosynthetic organisms. In: Lumsden P, Millar A (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, Pp 1–34

    Google Scholar 

  • Jones TL, Ort DR (1997) Circadian regulation of sucrose phosphate synthase activity in tomato by protein phosphatase activity. Plant Physiol 113:1167–1175

    PubMed  CAS  Google Scholar 

  • Jones TL, Tucker DE, Ort DR (1998) Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol 118:149–158

    PubMed  CAS  Google Scholar 

  • Jouve L, Greppin H, Agosti RD (1998) Arabidopsis thaliana floral stem elongation: evidence for an endogenous circadian rhythm. Plant Physiol Biochem 36:469–472

    CAS  Google Scholar 

  • Jouve L, Gaspar T, Kevers C, Greppin H, Agosti RD (1999) Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta 209:136–142

    PubMed  CAS  Google Scholar 

  • Kaiser H, Kappen L (1997) In situ observations of stomatal movements in different light-dark regimes: the influence of endogenous rhythmicity and long term adjustments. J Exp Bot 48:1583–1589

    CAS  Google Scholar 

  • Kana TM, Miller JH (1977) Effect of photoperiod on stomatal opening in Vicia faba. Plant Physiol 60:803–804

    PubMed  CAS  Google Scholar 

  • Katayama M, Tsinoremas NF, Kondo T, Golden SS (1999) A gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 181:3516–3524

    PubMed  CAS  Google Scholar 

  • Kathiresan A, Reid DM, Chinnappa CC (1996) Light-and temperature-entrained circadian regulation of activity and mRNA accumulation of 1-aminocyclopropane-1-carboxylic acid oxidase in Stellaria longipes. Planta 199:329–335

    PubMed  CAS  Google Scholar 

  • Kayali S, Greppin H, Agosti RD (1997) Effect of EGTA on the diurnal leaf movement of Phaseolus vulgaris. Plant Physiol Biochem 35:915–922

    CAS  Google Scholar 

  • Kellmann JW, Merforth N, Wiese M, Pichersky E, Piechulla B (1993) Concerted circadian oscillations in transcript levels of nineteen (Lha/b)(cab) genes in Lycopersicon esculentum (tomato). Mol Gen Genet 237:439–448

    PubMed  CAS  Google Scholar 

  • Kellmann JW, Hoffrogge R, Piechulla B (1999) Transcriptional regulation of oscillating steady-state Lhc mRNA levels: characterization of two Lhca promoter fragments in transgenic tobacco plants. Biol Rhythm Res 30:264–271

    CAS  Google Scholar 

  • Kim HJ, Coté GG, Crain RC (1992) Effects of light on the membrane potential of protoplasts from Samanea saman pulvini. Involvement of K+ channels and the H+-ATPase. Plant Phsiol 99:1532–1539

    CAS  Google Scholar 

  • Kim HJ, Coté GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962

    PubMed  CAS  Google Scholar 

  • Kim HJ, Coté GG, Crain RC (1996) Inositol 1,4,5-triphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287

    PubMed  CAS  Google Scholar 

  • Klenell M, Pedersén M, Lüning K (2001) A circadian rhythm of photosynthesis in the brownalga Laminaria saccharina: dependence on light intensity and spectral quality. Biol Rhythm Res 32:461

    Google Scholar 

  • Knight TJ, Weissman GS (1982) Rhythms in glutamine synthetase activity, Energy charge, and glutamine in sunflower roots. Plant Physiol 70:1683–1688

    PubMed  CAS  Google Scholar 

  • Knoetzel J, Rensing L (1990) Characterization of the photosynthetic apparatus from the marine dinoflagellate Gonyaulax polyedra. II. Circadian rhythmicity of photosynthesis and the supramolecular organization of pigment-protein complexes. J Plant Physiol 136:280–288

    CAS  Google Scholar 

  • Koller D, Björkman O, Ritter S (1995) Role of pulvinar chloroplasts in light-driven leaf movements of the trifoliate leaf of bean (Phaseolus vulgaris L.). J Exp Bot 46:1215–1222

    CAS  Google Scholar 

  • Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347

    PubMed  CAS  Google Scholar 

  • Kondo T (1983) Phase shift in the potassium uptake rhythm of the duckweed Lemna gibba G3 caused by an azide pulse. Plant Physiol 73:605–608

    PubMed  CAS  Google Scholar 

  • Kondo T (1984) Removal by a trace of sodium of the period lengthening of the potassium uptake rhythm due to lithium in Lemna gibba G3. Plant Physiol 75:1071–1074

    PubMed  CAS  Google Scholar 

  • Kondo T (1989) Comparison of phase shifts of the circadian rhythm of K+ uptake in Lemna gibba G3 by various amino acid analogs. Plant Physiol 90:1600–1608

    PubMed  CAS  Google Scholar 

  • Konopka RJ, Orr D (1980) Effects of a clock mutation on the subjective day—implications for a membrane model of the Drosophila circadian clock. In: Siddiqi O, Babu P, Hall L M (eds) Development and neurobiology of Drosophila. Plenum, New York, pp 409–416

    Google Scholar 

  • Kreps JA, Kay SA (1997) Coordination of plant metabolism and development by the circadian clock. Plant Cell 9:1235–1244

    PubMed  CAS  Google Scholar 

  • Kreps JA, Simon AE (1997) Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis. Plant Cell 9:297–304

    PubMed  CAS  Google Scholar 

  • Kruse E, Grimm B, Beator J, Kloppstech K (1997) Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. Planta 202:235–241

    CAS  Google Scholar 

  • Kusumi K, Arata H, Iwasaki I, Nishimura M (1994) Regulation of PEP-carboxylase by biological clock in a CAM plant. Plant Cell Physiol 35:233–242

    CAS  Google Scholar 

  • Laval-Martin DL, Carré IA, Barbera SJ, Edmunds LN (1990) Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the achlorophyllous ZC mutant of Euglena gracilis Klebs strain Z. Arch Biochem Biophys 276:433–441

    PubMed  CAS  Google Scholar 

  • Lebert M, Porst M, Hader DP (1999) Circadian rhythm of gravitaxis in Euglena gracilis. J Plant Physiol 155:344–349

    PubMed  CAS  Google Scholar 

  • Lecharny A, Wagner E (1984) Stem elongation rate in light-grown plants. Evidence for an endogenous circadian rhythm in Chenopodium rubrum. Physiol Plant 60:437–443

    Google Scholar 

  • Lecharny A, Tremolières A, Wagner E (1990) Correlation between the endogenous circadian rhythmicity in growth rate and fluctuations in oleic acid content in expanding stems of Chenopodium rubrum L. Planta 182:211–215

    CAS  Google Scholar 

  • Lee Y, Satter RL (1987) H+-uptake and release during circadian rhythmic movements of excised Samanea motor organs. Plant Physiol 83:856–862

    PubMed  CAS  Google Scholar 

  • Lee Y, Satter RL (1989) Blue, Red light and darkness on pH of the apoplast in the Samanea pulvinus. Planta 178:31–40

    Google Scholar 

  • Leloup J-C, Goldbeter A (1997) Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the PER protein in Drosophila. Chronobiol Int 14:511–520

    PubMed  CAS  Google Scholar 

  • Lemaire SD, Stein M, Issakidis-Bourguet E, Keryer E, Benoit V, Pineau B, Gérard-Hirne C, Miginiac-Maslow M, Jacquot JP (1999) The complex regulation of ferre-doxin/thioredoxin-related genes by light and the circadian clock. Planta 209:221–229

    PubMed  CAS  Google Scholar 

  • Lillo C, Ruoff P (1989) An unusually rapid light-induced nitrate reductase mRNA pulse and circadian oscillations. Naturwissenschaften 76:526–528

    PubMed  CAS  Google Scholar 

  • Lillo C, Meyer C, Ruoff P (2001) The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops. Plant Physiol 125:1554–1557

    PubMed  CAS  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13:1293–1304

    PubMed  CAS  Google Scholar 

  • Liu Y, Garceau NY, Loros JJ, Dunlap JC (1997) Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurspora circadian clock. Cell 89:477–486

    PubMed  CAS  Google Scholar 

  • Liu Z, Taub CC, McClung CR (1996) Identification of an Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock. Plant Physiol 112:43–51

    PubMed  CAS  Google Scholar 

  • Lonergan TA (1981) A circadian rhythm in the rate of light-induced electron flow in three leguminous species. Plant Physiol 68:1041:1046

    PubMed  Google Scholar 

  • Lonergan TA (1990) Steps linking the photosynthetic light reactions to the biological clock require calcium. Plant Physiol 93:110–115

    PubMed  CAS  Google Scholar 

  • Lonergan TA, Sargent ML (1978) Regulation of the photosynthesis rhythm in Euglena gracilis. I. Carbonic anhydrase and glyceraldehyde-3-phosphate dehydrogenase do not regulate the photosynthesis rhythm. Plant Physiol 61:150–153

    PubMed  CAS  Google Scholar 

  • Lonergan TA, Sargent ML (1979) Regulation of the photosynthesis rhythm in Euglena gracilis. II. Involvement of electron flow through both photosystems. Plant Physiol 64:99–103

    PubMed  CAS  Google Scholar 

  • Loros J (1995) The molecular basis of the Neurospora clock. Sem Neurosci 7:3–13

    CAS  Google Scholar 

  • Lüttge U (2000) The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism. Planta 211:761–769

    PubMed  Google Scholar 

  • Lüttge U, Ball E (1978) Free running oscillations of transpiration and CO2 exchange in CAM plants without a concomitant rhythm of malate levels. Z Pflanzenphysiol 90:69–77

    Google Scholar 

  • Lüttge U, Beck F (1992) Endogenous rhythms and chaos in crassulacean acid metabolism. Planta 188:28–38

    Google Scholar 

  • Lüttge U, Grams TEE, Hechler B, Blasius B, Beck F (1996) Frequency resonances of the circadian rhythm of CAM under external temperature rhythms of varied period lengths in continuous light. Bot Acta 109:422–426

    Google Scholar 

  • Lüttge U, Kluge M, Bauer G (2002) Botanik. 4th edn., VCH, Weinheim

    Google Scholar 

  • Lumsden PJ (1991) Circadian rhythms and phytochrome. Annu Rev Plant Physiol Plant Mol Biol 42:351–371

    CAS  Google Scholar 

  • Macduff JH, Dhanoa MS (1996) Diurnal and ultradian rhythm in K+ uptake by Trifolium repens under natural light patterns: evidence for segmentation at different root temperatures. Physiol Plant 98:298–308

    CAS  Google Scholar 

  • Màchackovà I, Chauvaux N, Dewitte W, Van Onckelen H (1997) Diurnal fluctuations in ethylene formation in Chenopodium rubrum. Plant Physiol 113:981–985

    PubMed  Google Scholar 

  • Makarov VN, Schoschina EV, Lüning K (1995) Diurnal and circadian periodicity of mitosis and growth in marine macroalgae. I. Juvenile sporophytes of Laminariales (Phaeophyta). Eur J Physiol 30:261–266

    Google Scholar 

  • Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Genes encoding pseudo-response regulators: insight into his-to-asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol 41:791–803

    PubMed  CAS  Google Scholar 

  • Makino S, Matsushika A, Kojima M, Oda Y, Mizumo T (2001) Light response of the circadian waves of the APRR1/TOC1 quintet: when does the quintet start singing rhythmically in Arabidopsis?. Plant Cell Physiol 42:334–339

    PubMed  CAS  Google Scholar 

  • Martino-Catt S, Ort DR (1992) Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci USA 89:3731–3735

    PubMed  CAS  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizumo T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudoresponse regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012

    PubMed  CAS  Google Scholar 

  • Mayer WE, Betz S, Schöffel S (1994) Are K+ channels and H+-ATPases of the plasma membrane involved in the control and generation of circadian rhythmicity in the pulvinar motor cells of Phaseolus?. Biol Rhythm Res 25:301–314

    CAS  Google Scholar 

  • Mayer WE, Hohloch C, Kalkuhl A (1997) Extensor protoplasts of the Phaseolus pulvinus: light-induced swelling may require extracellular Ca2+ influx, Dark-induced shrinking inositol 1,4,5-triphosphate-induced Ca2+ mobilization. J Exp Bot 48:219–228

    CAS  Google Scholar 

  • McClung CR (1997) The regulation of catalase in Arabidopsis. Free Rad Biol Med 23:489–496

    PubMed  CAS  Google Scholar 

  • McClung CR (2000) Circadian rhythms in plants: a millenial view. Physiol Plant 109:359–371

    CAS  Google Scholar 

  • McClung CR, Kay SA (1994) Circadian rhythms in the higher plant, Arabidopsis thaliana. In: Somerville CR, Meyerowitz EM (eds) Arabidopsis thaliana. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Pp 615–637

    Google Scholar 

  • McClung CR, Fox BA, Dunlap JC (1989) The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 339:558–562

    PubMed  CAS  Google Scholar 

  • McClung CR, Hsu M, Painter JE, Gagne JM, Karlsberg SD, Salomé PA (2000) Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol 123:381–391

    PubMed  CAS  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408:716–720

    PubMed  CAS  Google Scholar 

  • Meidner H, Willmer CM (1993) Circadian rhythms of stomatal movements in epidermal strips. J Exp Bot 44:1649–1652

    Google Scholar 

  • Mérida A, Rodríguez-Galán JM, Vincent C, Romero JM (1999) Expression of the granule-bound starch synthase I (waxy) gene from snapdragon is developmentally and circadian clock regulated. Plant Physiol 120:401–409

    PubMed  Google Scholar 

  • Merrow M, Brunner M, Roenneberg T (1999) Assignment of circadian function of the Neurospora clock gene frequency. Nature 399:584–586

    PubMed  CAS  Google Scholar 

  • Millar AJ (1998) The cellular organization of circadian rhythms in plants: not one but many clocks. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, Pp 51–68

    Google Scholar 

  • Millar AJ (1999) Biological clocks in Arabidopsis thaliana. New Phytol 141:175–197

    CAS  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    PubMed  CAS  Google Scholar 

  • Millar AJ, Straume M, Chory J, Chua NH, Kay SA (1995) The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267:1163–1166

    PubMed  CAS  Google Scholar 

  • Min H, Golden SS (2000) Whose product is important for reductant production at night in Synechococcus elongatus PCC7942. J Bacteriol 182:6214–6221

    PubMed  CAS  Google Scholar 

  • Mishkind M, Mauzerall D, Beale SI (1979) Diurnal variation in situ of photosynthetic capacity in Ulva is caused by a dark reaction. Plant Physiol 64:896–899

    PubMed  CAS  Google Scholar 

  • Mittag M, Hastings JW (1996) Exploring the signaling pathway of circadian bioluminescence. Physiol Plant 96:727–732

    CAS  Google Scholar 

  • Mittag M, Lee DH, Hastings JW (1994) Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3′ untranslated region of its mRNA. Proc Natl Acad Sci USA 91:5257–5261

    PubMed  CAS  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman. A patch-clamp study. Plant Physiol 88:643–648

    PubMed  CAS  Google Scholar 

  • Morgan PW, Finlayson SA, Lee IJ, Childs KL, He CJ, Creelman RA, Drew MC, Mullet JE (1997) Regulation of a circadianly rhythmic ethylene production by phytochrome B in sorghum. In: Kanellis AK, Chang C, Kende H, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer, Dordrecht, Pp 105–111

    Google Scholar 

  • Morse D, Hastings JW, Roenneberg T (1994) Different phase responses of the two circadian oscillators in Gonyaulax. J Biol Rhythms 9:263–274

    PubMed  CAS  Google Scholar 

  • Moshelion M, Moran N (2000) Potassium-efflux channels in extensor and flexor cells of the motor organ of Samanea saman are not identical. Effects of cytosolic calcium. Plant Physiol 124:911–919

    PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Biela A, Uehelin N, Hedrich R, Otto B, Levi H, Moran N, Kalden-hoff R (2002) Plasmamembrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739

    PubMed  CAS  Google Scholar 

  • Moysset L, Simon E (1989) Role of calcium in phytochrome-controlled nyctinastic movements of Albizzia lophanta leaflets. Plant Physiol 90:1108–1114

    PubMed  CAS  Google Scholar 

  • Nakashima H (1982) Effects of membrane ATPase inhibitors on light-induced phase shifting of the circadian clock in Neurospora crassa. Plant Physiol 69:619–623

    PubMed  CAS  Google Scholar 

  • Neff R, Blasius B, Beck F, Lüttge U (1998) Thermodynamics and energetics of the tonoplast membrane operating as a hysteresis switch in an oscillatory model of crassulacean acid metabolism. J Membr Biol 165:37–43

    PubMed  CAS  Google Scholar 

  • Nimmo G A, Wilkins MB, Fewson CA, Nimmo HG (1987) Persistent circadian rhythm in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and its sensitivity to inhibition by malate. Planta 170:408–415

    CAS  Google Scholar 

  • Nimmo HG (1998) Circadian regulation of a plant protein kinase. Chronobiol Int 15:109–118

    PubMed  CAS  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    PubMed  CAS  Google Scholar 

  • Nimmo HG, Fontaine V, Hartwell J, Jenkins GI, Nimmo G A, Wilkins MB (2001) PEP carboxylase kinase is a novel protein kinase controlled at the level of expression. New Phytol 151:91–97

    CAS  Google Scholar 

  • Nishizaki Y, Kubota M, Yamamiya K, Watanabe M (1997) Action spectrum of light pulse-induced membrane depolarization in pulvinar motor cells of Phaseolus. Plant Cell Physiol 38:526–529

    CAS  Google Scholar 

  • Njus D, Sulzmann FM, Hastings JW (1974) Membrane model for the circadian clock. Nature 248:116–120

    PubMed  CAS  Google Scholar 

  • Njus D, McMurry L, Hastings JW (1977) Conditionality of circadian rhythmicity synergistic action of light and temperature. J Comp Physiol 117:335–344

    Google Scholar 

  • Novak B, Greppin H (1979) High-frequency oscillations and circadian rhythm of the membrane potential in spinach leaves. Planta 144:235–240

    Google Scholar 

  • Nuernbergk EL (1961) Endogener Rhythmus und CO2-Stoffwechsel bei Pflanzen mit diurnalem Säurestoffwechsel. Planta 56:28–70

    CAS  Google Scholar 

  • Nungesser D, Kluge M, Tolle H, Oppelt W (1984) A dynamic computer model of the metabolic and regulatory processes in crassulacean acid metabolism. Planta 162:204–214

    CAS  Google Scholar 

  • Okazaki Y, Azuma K, Nishizaki Y (2000) A pulse of blue light induces a transient increase in activity of apoplastic K+ in laminar pulvinus of Phaseolus vulgaris L. Plant Cell Physiol 41:230–233

    PubMed  CAS  Google Scholar 

  • Oltmanns O (1960) Über den Einfluß der Temperatur auf die endogene Tagesrhythmik und die Blühinduktion bei der Kurztagspflanze Kalanchoë blossfeldiana. Planta 54:233–264

    Google Scholar 

  • O’Neill SD, Zhang XS, Zheng CC (1994) Dark and circadian regulation of mRNA accumulation in the short-day plant Pharbitis nil. Plant Physiol 104:569–580

    CAS  Google Scholar 

  • Ono F, Frommer WB, Von Wirén N (2000) Coordinated diurnal regulation of low-and high-affinity nitrate transporters in tomato. Plant Biol 2:17–23

    CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    PubMed  CAS  Google Scholar 

  • Paraskevopoulou T, Anastassiou R, Argyroudi-Akoyunoglou JH (1995) Circadian ex-pression of the light-harvesting protein of photosystem II in etiolated bean leaves following a single red light pulse: coordination with the capacity of the plant to form chlorophyll and the thylakoid bound protease. Photosyn Res 44:93–106

    Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    PubMed  CAS  Google Scholar 

  • Périlleux C, Ongena P, Bernier G (1996) Changes in gene-expression in the leaf of Lolium temulentum L. Ceres during the photoperiodic induction of flowering. Planta 200:32–40

    Google Scholar 

  • Pfeffer W (1907) Abh Math Phys Kl Kgl Sächs Ges Wiss 30 111:259–472

    Google Scholar 

  • Pfeffer W (1915) Abh Math Phys Kl Kgl Sächs Ges Wiss 34 1:1–154

    Google Scholar 

  • Piechulla B (1988) Plastid and nuclear mRNA fluctuations in tomato leaves—diurnal and circadian rhythms during extended dark and light periods. Plant Mol Biol 11:345–353

    CAS  Google Scholar 

  • Piechulla B (1999) Circadian expression of the light-harvesting complex protein genes in plants. Chronobiol Int 16:115–128

    PubMed  CAS  Google Scholar 

  • Piechulla B, Gruissem W (1987) Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J 6:3593–3599

    PubMed  CAS  Google Scholar 

  • Piechulla B, Riesselmann S (1990) Effect of temperature alterations on the diurnal expression pattern of the chlorophyll a/b binding proteins in tomato seedlings. Plant Physiol 94:1903–1906

    PubMed  CAS  Google Scholar 

  • Pilgrim ML, McClung CR (1993) Differential involvement of the circadian clock in the expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis, Assembly, And activation in Arabidopsis thaliana. Plant Physiol 103:553–564

    PubMed  CAS  Google Scholar 

  • Pilgrim ML, Caspar T, Quail PH, McClung CR (1993) Circadian and light regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol 23:349–364

    PubMed  CAS  Google Scholar 

  • Pongratz P, Beck E (1978) Diurnal oscillations of amylolytic activity in spinach chloroplasts. Plant Physiol 62:687–689

    PubMed  CAS  Google Scholar 

  • Pott MB, Kellmann JW, Piechulla B (2000) Circadian and phytochrome control act at different promoter of the tomato Lhca3 gene. J Plant Physiol 157:449–452

    CAS  Google Scholar 

  • Pott MB, Pichersky E, Piechulla B (2002) Nocturnal oscillations of methyl salicylate emission, SAMT enzyme activity, And SAMT mRNA in flowers of Stephanotis floribunda. J Plant Physiol (in press)

    Google Scholar 

  • Prézelin BB, Sweeney BM (1977) Characterization of photosynthetic rhythms in marine dinoflagellates. II. Photosynthesis-irradiance curves and in vivo chlorophyll a fluorescence. Plant Physiol 60:388–392

    PubMed  Google Scholar 

  • Prézelin BB, Meeson BW, Sweeney BM (1977) Characterization of photosynthetic rhythms in marine dinoflagellates. I. Pigmentation, Photosynthetic capacity and respiration. Plant Physiol 60:384–387

    PubMed  Google Scholar 

  • Racusen RH, Satter RL (1975) Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 225:408–410

    Google Scholar 

  • Ramalho CB, Hastings JW, Colepicolo P (1995) Circadian oscillations of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol 107:225–231

    PubMed  CAS  Google Scholar 

  • Rascher U (2001) Der endogene CAM-Ryhthmus von Kalanchoë daigremontiana als nichtlineares Modellsystem zum Verständnis der raum-zeitlichen Dynamik einer biologischen Uhr. Der Andere Verlag, Osnabrück

    Google Scholar 

  • Rascher U, Blasius B, Beck F, Lüttge U (1998) Temperature profiles for the expression of endogenous rhythmicity and arrhythmicity of CO2 exchange in the CAM plant Kalanchoë daigremontiana can be shifted by slow temperature changes. Planta 207:76–82

    CAS  Google Scholar 

  • Rascher U, Hütt MT, Siebke K, Osmond B, Beck F, Lüttge U (2001) Spatiotemporal variation of metabolism in a plant circadian rhythm: the biological clock as a an assembly of coupled individual oscillators. Proc Natl Acad Sci USA 98:11801–11805

    PubMed  CAS  Google Scholar 

  • Rau W (1967) Untersuchungen über die lichtabhängige Carotinbiosynthese. I. Das Wirkungsspektrum von Fusarium aquaeductum. Planta 72:14–28

    CAS  Google Scholar 

  • Resch A (1989) Paranormologie: Geschichte und Fachgebiete. Universitas 44:310–320

    Google Scholar 

  • Reves PH, Coupland G (2000) Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol 3:37–42

    Google Scholar 

  • Rikin A (1991) Temperature-induced phase shifting of circadian rhythms in cotton seedlings as related to variations in chilling resistance. Planta 185:407–414

    Google Scholar 

  • Roblin G, Fleurat-Lessard P, Bonmort J (1989) Effects of compounds affecting calcium channels on phytochrome-and blue pigment-mediated pulvinar movements of Cassia fasciculata. Plant Physiol 90:697–701

    PubMed  CAS  Google Scholar 

  • Rockel B, Blasius B, Beck F, Ratajczak R, Lüttge U (1997) Endogenous oscillations of the transcript amounts of subunit-c of the V-ATPase of Mesembryanthemum crystallinum with harmonic frequency resonances under continuous illumination. Cell Mol Biol Lett 2:69–76

    CAS  Google Scholar 

  • Roenneberg T (1996) The complex circadian system of Gonyaulax polyedra. Physiol Plant 96:733–737

    CAS  Google Scholar 

  • Roenneberg T, Deng TS (1997) Photobiology of the Gonyaulax circadian system. I. Different phase response curves for red and blue light. Planta 202:494–501

    CAS  Google Scholar 

  • Roenneberg T, Merrow M (1998) Molecular circadian oscillators: an alternative hypothesis. J Biol Rhythms 13:167–179

    PubMed  CAS  Google Scholar 

  • Roenneberg T, Morse D (1993) Two circadian oscillators in one cell. Nature 362:362–364

    Google Scholar 

  • Rogers LA, Greenbank GR (1930) The intermittent growth of bacterial cultures. J Bacteriol 19:181–190

    PubMed  CAS  Google Scholar 

  • Rufty TW, Kerr PS, Huber SC (1983) Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol 73:428–433

    PubMed  CAS  Google Scholar 

  • Sage-Ono K, Ono M, Harada H, Kamada H (1998) Accumulation of a clock-regulated transcript during flower-inductive darkness in Pharbitis nil. Plant Physiol 116:1479–1485

    PubMed  CAS  Google Scholar 

  • Sai J, Johnson CH (1999) Different circadian oscillators control Ca2+ fluxes and Lhcb gene expression. Proc Natl Acad Sci USA 96:11659–11663

    PubMed  CAS  Google Scholar 

  • Salvador ML, Klein U, Bogorad L (1993) Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation. Plant J 3:213–219

    PubMed  CAS  Google Scholar 

  • Samuelsson G, Sweeney BM, Mattick HA, Prézelin BB (1983) Changes in photosystem II account for the circadian rhythm in photosynthesis in Gonyaulax polyedra. Plant Physiol 73:329–331

    PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1973) Leaf movements: Rosetta stone of plant behavior? Bioscience 23:407–416

    CAS  Google Scholar 

  • Satter RL, Hatch AM, Gill MK (1979) A circadian rhythm in oxygen uptake by Samanea pulvini. Plant Physiol 64:379–381

    PubMed  CAS  Google Scholar 

  • Satter RL, Xu Y, De Pass A (1987) Effects of temperature on H+-secretion and uptake by excised flexor cells during dark-induced closure of Samanea leaflets. Plant Physiol 85:850–855

    PubMed  CAS  Google Scholar 

  • Satter RL, Gorton HL, Vogelmann TC (1990) The pulvinus: motor organ for leaf movement. Am Soc Plant Physiol, Rockville, MD

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, Properties, regulation and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Plainville, NY, Pp 343–406

    Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré I A, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    PubMed  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    PubMed  CAS  Google Scholar 

  • Schmid R, Dring MJ (1992) Circadian rhythm and fast responses to blue light of photosynthesis in Ectocarpus (Phaeophyta, Ectocarpales). I. Characterization of the rhythm and the blue-light response. Planta 187:53–59

    CAS  Google Scholar 

  • Schmid R, Forster R, Dring MJ (1992) Circadian rhythm and fast responses to blue light of photosynthesis in Ectocarpus (Phaeophyta, Ectocarpales). II. Light and CO2 dependence of photosynthesis. Planta 187:60–66

    CAS  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, A bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    PubMed  CAS  Google Scholar 

  • Schröder-Lorenz A, Rensing L (1987) Circadian changes in protein-synthesis rate and protein phosphorylation in cell-free extracts of Gonyaulax polyedra. Planta 170:7–13

    Google Scholar 

  • Schuster HG (1995) Deterministic chaos, 3rd edn. VCH, Weinheim

    Google Scholar 

  • Schweiger E, Wallraff HG, Schweiger HG (1964a) Über tagesperiodische Schwankungen der Sauerstoffbilanz kernhaltiger und kernloser Acetabularia mediterranea. Z Naturforsch 196:499–505

    Google Scholar 

  • Schweiger E, Wallraff AG, Schweiger HG (1964b) Endogenous circadian rhythm in cytoplasm of Acetabularia: influence of the nucleus. Science 146:656–659

    Google Scholar 

  • Snaith PJ, Mansfield TA (1986) The circadian rhythm of stomatal opening: evidence for the involvement of potassium and chloride fluxes. J Exp Bot 37:188–199

    Google Scholar 

  • Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121:9–19

    PubMed  CAS  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998a) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    PubMed  CAS  Google Scholar 

  • Somers DE, Webb AAR, Pearson M, Kay SA (1998b) The short-period mutant, toc1-, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494

    PubMed  CAS  Google Scholar 

  • Staiger D (2000) Biologische Zeitmessung bei Pflanzen. Biol Unserer Zeit 30:76–79

    Google Scholar 

  • Staiger D (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta 214:334–344

    PubMed  CAS  Google Scholar 

  • Staiger D, Heintzen C (1999) The circadian system of Arabidopsis thaliana. Chronobiol Int 16:1–16

    PubMed  CAS  Google Scholar 

  • Stålfelt MG (1963) Diurnal dark reactions in the stomatal movements. Physiol Plant 16:756–766

    Google Scholar 

  • Starrach N, Mayer WE (1989) Changes of the apoplastic pH and K+ concentration in the Phaseolus pulvinus in situ in relation to rhythmic leaf movements. J Exp Bot 40:865–873

    CAS  Google Scholar 

  • Straley SC, Bruce VG (1979) Stickiness to glass. Circadian changes in the cell surface of Chlamydomonas reinhardtii. Plant Physiol 63:1175–1181

    PubMed  CAS  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) An autoregulatory response regulator homolog. Science 289:768–771

    PubMed  CAS  Google Scholar 

  • Suh S, Moran N, Lee Y (2000) Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1969) Rhythmic phenomena in plants. Academic Press, London

    Google Scholar 

  • Sweeney BM (1974) A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes. Int J Chronobiol 2:25

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1987) Rhythmic phenomena in plants, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Tamponnet C, Edmunds LN (1990) Entrainment and phase shifting of the circadian rhythm of cell division by calcium in synchronous cultures of the wild-type Z strain and of the ZC achlorophyllous mutant of Euglena gracilis. Plant Physiol 93:425–431

    PubMed  CAS  Google Scholar 

  • Tavladoraki P, Kloppstech K, Argyroudi-Akoyunoglou JH (1989) Circadian rhythm in the expression of the mRNA coding for the apoprotein of the light-harvesting complex of photosystem II. Phytochrome control and persistent far red reversibility. Plant Physiol 90:665–672

    PubMed  CAS  Google Scholar 

  • Taybi T, Patil S, Chollet R, Cushman JC (2000) A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. Plant Physiol 123:1471–1481

    PubMed  CAS  Google Scholar 

  • Thain SC, Hall A, Millar AJ (2000) Functional independence of circadian clocks that regulate plant gene expression. Curr Biol 10:951–956

    PubMed  CAS  Google Scholar 

  • Theißen G, Saedler H (1997) Molecular architects of plant body plans. Progress in Botany 59. Springer, Berlin Heidelberg New York, Pp 227–256

    Google Scholar 

  • Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, Water stress and abscisic acid. Plant Mol Biol 42:833–845

    PubMed  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Lüning K (1996) Diurnal and circadian periodicity of mitosis and growth in marine macroalgae. II. The green alga Ulva pseudocurvata. Eur J Phycol 31:181–188

    Google Scholar 

  • Töth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    PubMed  Google Scholar 

  • Trewavas A (1999) Le calcium, C’est la vie: calcium makes waves. Plant Physiol 120:1–6

    PubMed  CAS  Google Scholar 

  • Upcroft JA, Done J (1976) Circadian rhythm of nitrate reductase (NADH) activity in wheat seedlings grown in continuous light. Aust J Plant Physiol 3:421–428

    CAS  Google Scholar 

  • Wagner E, Frosch S (1974) Endogenous rhythmicity and energy transduction. VI. Rhythmicity in reduced and oxidized pyridine nucleotide levels in seedlings of Chenopodium rubrum. J Interdiscip Cycle Res 5:230–239

    Google Scholar 

  • Wagner E, Frosch S, Kempf O (1974a) Endogenous rhythmicity and energy transduction. VII. Phytochrome-modulated rhythms in pyridine nucleotide levels in seedlings of Chenopodium rubrum. Plant Sci Lett 3:43–48

    CAS  Google Scholar 

  • Wagner E, Tetzner J, Haertlé U, Deitzer GF (1974b) Endogenous rhythmicity and energy transduction. VIII. Kinetic in enzyme activity, Redox state and energy charge as related to photomorphogenesis in seedlings of Chenopodium rubrum L. Ber Dtsch Bot Ges 87:291–302

    Google Scholar 

  • Walla OJ, De Groot EJ, Schweiger M (1994) On the molecular mechanism of the circadian clock. The 412,000 M(r) clock protein of Chlorella was identified as 3-phosphoglycerate kinase. J Cell Sci 107:719–726

    PubMed  CAS  Google Scholar 

  • Waterhouse J (2001) Time in biology with particular reference to humans. Eur Rev 9:31–42

    Google Scholar 

  • Watts DJ (1999) Small worlds. The dynamics of networks between order and randomness. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Webb AAR (1998) Stomatal rhythms. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, Pp 69–79

    Google Scholar 

  • Webb AAR, Hetherington AM (1997) Convergence of the ABA, CO2 and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol 114:1157–1560

    Google Scholar 

  • Whitmore D, Foulkes NS, Sassone-Corsi P (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404:87–91

    PubMed  CAS  Google Scholar 

  • Wiedemann I, De Groot EJ, Schweiger M (1992) On the molecular mechanism of the circadian clock: the 64,000-Mr protein of Chlamydomonas reinhardtii might be related to the biological clock. Planta 186:593–599

    CAS  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to cray fish and squids. Nature 373:33–36

    PubMed  CAS  Google Scholar 

  • Wilkins MB (1959) An endogenous rhythm in the rate of carbon dioxide output of Bryophyllum. I. Some preliminary experiments. J Exp Bot 10:377–390

    CAS  Google Scholar 

  • Wilkins MB (1960) An endogenous rhythm in the rate of carbon dioxide output of Bryophyllum. II. The effects of light and darkness on the phase and period of the rhythm. J Exp Bot 11:269–288

    CAS  Google Scholar 

  • Wilkins MB (1962) An endogenous rhythm in the rate of carbon dioxide output of Bryophyllum. II. The effects of light and darkness on the phase and period of the rhythm. J Exp Bot 11:269–288

    Google Scholar 

  • Wilkins MB (1983) The circadian rhythm of carbon-dioxide metabolism in Bryophyllum: the mechanism of phase-shift induction by thermal stimuli. Planta 157:471–480

    CAS  Google Scholar 

  • Wilkins MB (1984) A rapid circadian rhythm of carbon-dioxide metabolism in Bryophyllum fedtschenkoi. Planta 161:381–384

    CAS  Google Scholar 

  • Wilkins MB (1992) Circadian rhythms: their origin and control. New Phytol 121:347–375

    CAS  Google Scholar 

  • Williams WE, Gorton HL (1998) Circadian rhythms have insignificant effects on plant gas exchange under field conditions. Physiol Plant 103:247–256

    CAS  Google Scholar 

  • Winfree AT (1990) The geometry of biological time. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wolff D, Künne A (2000) Light-regulated, Circadian respiration activity of Euglena gracilis mutants that lack chloroplasts. J Plant Physiol 156:52–59

    CAS  Google Scholar 

  • Wood NT, Haley A, Viry-Moussaid M, Johnson CH, Van der Luit AH, Trewavas AJ (2001) The calcium rhythms of different cell types oscillate with different circadian phases. Plant Physiol 125:787–796

    PubMed  CAS  Google Scholar 

  • Xu Y, Johnson CH (2001) A clock-and light-regulated gene that links the circadian oscillator to LHCB gene expression. Plant Cell 13:1411–1425

    PubMed  CAS  Google Scholar 

  • Yan OY, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Google Scholar 

  • Yoshida I, Yamagata H, Hirasawa E (1999) Blue-and red-light regulation and circadian control of gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil. J Exp Bot 50:319–326

    CAS  Google Scholar 

  • Zheng CC, Bui AQ, O’Neill SD (1993) Abundance of an mRNA encoding a high mobility group DNA-binding protein is regulated by light and an endogenous rhythm. Plant Mol Biol 23:813–823

    PubMed  CAS  Google Scholar 

  • Zhong HH, McClung CR (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet 251:196–203

    PubMed  CAS  Google Scholar 

  • Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol 104:889–898

    PubMed  CAS  Google Scholar 

  • Zhong HH, Resnick AS, Straume M, McClung CR (1997) Effects of synergistic signaling by phytochrome A and cryptochrome on circadian clock-regulated catalase expression. Plant Cell 9:947–955

    PubMed  CAS  Google Scholar 

  • Zucker Löwen C, Satter RL (1989) Monitored with liquid membrane microelectrodes. Planta 179:421–427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüttge, U. (2003). Circadian Rhythmicity: Is the “Biological Clock” Hardware or Software?. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55819-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55819-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62838-2

  • Online ISBN: 978-3-642-55819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics