Skip to main content

Die Komponenten der extrazellulären Matrix, ihre Struktur und Funktion

  • Chapter
Molekularmedizinische Grundlagen von rheumatischen Erkrankungen

Part of the book series: Molekulare Medizin ((MOLMED))

  • 147 Accesses

Zusammenfassung

Ursprünglich wurden das Bindegewebe oder die extrazelluläre Matrix (ECM) vorwiegend unter dem Gesichtspunkt einer Gerüst- und Stützsubstanz gesehen, welche die biomechanische Stabilität des Organismus gewährleistet. Typische Beispiele dafür sind Knochen, Knorpel, Sehnen und Haut sowie die elastischen Gefäßwände. In den letzten Jahrzehnten ist ein zusätzlicher wichtiger Aspekt, die Wechselwirkung der ECM mit Zellen und der Einfluss auf ihr Verhalten, in den Vordergrund gerückt. So wirkt die ECM als Substrat für Adhäsion, Ausbreitung, Wanderung und Teilung von Zellen und kontrolliert ihre Differenzierung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 114.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams JC, Lawler J (1993) Diverse mechanisms for cell attachment to platelet thrombospondin. J Cell Sci 104:1061–1071

    Google Scholar 

  • Argraves WS, Dickerson K, Burgess WH, Ruoslahti E (1989) Fibulin, a novel protein that interacts with the fibronectin receptor beta subunit cytoplasmic domain. Cell 58: 623–629

    Google Scholar 

  • Argraves WS, Tran H, Burgess WH, Dickerson K (1990) Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J Cell Biol 111:3155–3164

    Google Scholar 

  • Beck K, Hunter I, Engel J (1990) Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J 4: 148–160

    Google Scholar 

  • Beck K, Gambee JE, Bohan CA, Bachinger HP (1996) The Cterminal domain of cartilage matrix protein assembles into a triple-stranded alpha-helical coiled-coil structure. J Mol Biol 256: 909–923

    Google Scholar 

  • Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266:75–81

    Google Scholar 

  • Bellahcene A, Merville MP, Castronovo V (1994) Expression of bone sialoprotein, a bone matrix protein, in human breast cancer. Cancer Res 54: 2823–2826

    Google Scholar 

  • Bellahcene A, Menard S, Bufalino R, Moreau L, Castronovo V (1996) Expression of bone sialoprotein in primary human breast cancer is associated with poor survival. Int I Cancer 69: 350–353

    Google Scholar 

  • Bellahcene A, Albert V, Pollina L, Basolo F, Fisher LW, Castronovo V (1998) Ectopic expression of bone sialoprotein in human thyroid cancer. Thyroid 8: 637–641

    Google Scholar 

  • Bianco P, Fisher LW, Young MF, Termine ID, Robey PG (1991) Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 49: 421–426

    Google Scholar 

  • Binette F, Cravens I, Kahoussi B, Haudenschild DR, Goetinck PF (1994) Link protein is ubiquitously expressed in noncartilaginous tissues where it enhances and stabilizes the interaction of proteoglycans with hyaluronic acid. J Biol Chem 269: 19.116–19.122

    Google Scholar 

  • Bork P, Downing AK, Kieffer B, Campbell ID (1996) Structure and distribution of modules in extracellular proteins. Q Rev Biophys 29: 119–167

    Google Scholar 

  • Bornstein P (1992) Thrombospondins: structure and regulation of expression. FASEB I 6: 3290–3299

    CAS  Google Scholar 

  • Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z (2000) Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol 19: 557–568

    Google Scholar 

  • Borradori L, Sonnenberg A (1996) Hemidesmosomes: roles in adhesion, signaling and human diseases. Curr Opin Cell Biol 8: 647–656

    Google Scholar 

  • Bowe MA, Fallon IR (1995) The role of agrin in synapse formation. Annu Rev Neurosci 18: 443–462

    Google Scholar 

  • Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19: 815–827

    Google Scholar 

  • Briggs MD, Hoffman SM, King LM et al. (1995) Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 10: 330–336

    Google Scholar 

  • Brown IC, Timpl R (1995) The collagen superfamily. Int Arch Allergy Immunol 107: 484–490

    Google Scholar 

  • Brown IC, Wiedemann H, Timpl R (1994) Protein binding and cell adhesion properties of two laminin isoforms (AmB1eB2e, AmB1sB2e) from human placenta. J Cell Sci 107: 329–338

    Google Scholar 

  • Bruckner-Tuderman L, Nilssen O, Zimmermann DR et al. (1995) Immunohistochemical and mutation analyses demonstrate that pro collagen VII is processed to collagen VII through removal of the NC-2 domain. J Cell Biol 131:551–559

    Google Scholar 

  • Bruns RR, Press W, Engvall E, Timpl R, Gross J (1986) Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 103: 393–404

    Google Scholar 

  • Burgeson RE (1996) Laminins in epidermal structures. In: Ekblom P, Timpl R (eds) The laminins. Harwood Academic Publishers, Reading, MA, pp 65–96

    Google Scholar 

  • Burgeson RE, Chiquet M, Deutzmann R et al. (1994) A new nomenclature for the laminins. Matrix Biol 14: 209–211

    PubMed  CAS  Google Scholar 

  • Byers PH (1990) Brittle bones — fragile molecules: disorders of collagen gene structure and expression. Trends Genet 6: 293–300

    Google Scholar 

  • Celikel R, Varughese KI, Madhusudan, Yoshioka A, Ware I, Ruggeri ZM (1998) Crystal structure of the von Willebrand factor Al domain in complex with the function blocking NMC-4 Fab. Nat Struct Biol 5: 189–194

    Google Scholar 

  • Chen Q, Johnson DM, Haudenschild DR, Goetinck PF (1995) Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation. Dev Biol 172: 293–306

    Google Scholar 

  • Chiquet-Ehrismann R (1995) Tenascins, a growing family of extracellular matrix proteins. Experientia 51: 853–862

    Google Scholar 

  • Chiquet-Ehrismann R, Hagios C, Matsumoto K (1994) The tenascin gene family. Perspect Dev Neurobiol 2: 3–7

    PubMed  CAS  Google Scholar 

  • Dalgleish R (1997) The human type I collagen mutation database. Nucleic Acids Res 25: 181–187

    Google Scholar 

  • Davidson IM, Zang MC, Zoia O, Giro MG (1995) Regulation of elastin synthesis in pathological states. Ciba Found Symp 192: 81–99

    Google Scholar 

  • De Luca A, Santra M, Baldi A, Giordano A, Iozzo RV (1996) Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases. J Biol Chem 271: 18.961–18.965

    Google Scholar 

  • Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB 17: 1475–1482

    Google Scholar 

  • De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Naeyaert IM (1997) Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes land II. Am J Hum Genet 60: 547–554

    Google Scholar 

  • Diab M, Wu JJ, Eyre DR (1996) Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites. Biochem J 314: 327–332

    PubMed  CAS  Google Scholar 

  • Doolittle RF (1984) Fibrinogen and fibrin. Annu Rev Biochem 53: 195–229

    Google Scholar 

  • Doolittle RF, Goldbaum DM, Doolittle LR (1978) Designation of sequences involved in the “coiled-coil” interdomainal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol 120: 311–325

    Google Scholar 

  • Dours-Zimmermann MT, Zimmermann DR (1994) A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J Biol Chem 269: 32.992–32.998

    Google Scholar 

  • Drickamer K (1993) Ca2+ dependent carbohydrate recognition domains in animal proteins. Curr Opin Struct Biol 3: 393–400

    Google Scholar 

  • Ekblom P, Timpl R (eds) The laminins. Harwood Academic Publishers, Reading, MA

    Google Scholar 

  • Ekblom M, Klein G, Mugrauer G et al. (1990) Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis. Cell 60: 337–46

    PubMed  CAS  Google Scholar 

  • Engel J, Prockop DJ (1991) The zipper-like folding of collagen tripie helices and the effects of mutations that disrupt the zipper. Annu Rev Biophys Chem 20: 137–152

    CAS  Google Scholar 

  • Engel J, Efimov V, Maurer P (1994) Domain organization of extracellular matrix proteins and their evolution. Development [Suppl] 120: 35–42

    Google Scholar 

  • Farrell DH, Thiagarajan P, Chung DW, Davie EW (1992) Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci USA 89: 10.729–10.732

    Google Scholar 

  • Fässler R, Schnegelsberg PN, Dausman I et al. (1994) Mice lacking alpha 1 (IX) collagen deveiop noninflammatory degenerative joint disease. Proc Natl Acad Sci USA 91: 5070–5074

    PubMed  Google Scholar 

  • French-Constant C (1995) Alternative splicing of fibronectin. Many different proteins but for different functions. Exp Cell Res 221: 261–271

    Google Scholar 

  • Fischer D, Brown-Ludi M, Schulthess T, Chiquet-Ehrismann R (1997) Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J Cell Sci 110: 1513–1522

    PubMed  CAS  Google Scholar 

  • Fisher LW, Whitson SW, Avioli LV, Termine JD (1983) Matrix sialoprotein of developing bone. J Biol Chem 258: 12.723–12.727

    Google Scholar 

  • Fisher LW, McBride OW, Termine JD, Young MF (1990) Human bone sialoprotein. Deduced pro tein sequence and chromosomallocalization. J Biol Chem 265: 2347–2351

    Google Scholar 

  • Fogerty FJ, Akiyama SK, Yamada KM, Mosher DF (1990) Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J Cell Biol 111: 699–708

    Google Scholar 

  • Fox JW, Mayer U, Nischt R et al. (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10: 3137–3146

    PubMed  CAS  Google Scholar 

  • Fujiwara S, Shinkai H, Mann K, Timpl R (1993) Structure and localization of 0-and N-linked oligosaccharide chains on basement membrane protein nidogen. Matrix 13: 215–222

    Google Scholar 

  • Fuss B, Wintergerst ES, Bartsch U, Schachner M (1993) Molecular characterization and in situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin. J Cell Biol 120: 1237–1249

    Google Scholar 

  • Gabriel DA, Muga K, Boothroyd EM (1992) The effect of fibrin structure on fibrinolysis. J Biol Chem 267: 24.259–24.263

    Google Scholar 

  • Gautarn M, Noakes PG, Moscoso L et al. (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85: 525–535

    Google Scholar 

  • Gebb C, Hayman EG, Engvall E, Ruoslahti E (1986) Interaction of vitronectin with collagen. J Biol Chem 261: 16.698–16.703

    Google Scholar 

  • Gerecke DR, Gordon MK, Wagman DW, Champliaud MF, Burgeson RE (1994) Hemidesmosomes anchoring filaments and anchoring fibrils: components of a unique attachment complex. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, San Diego, pp 417–39

    Google Scholar 

  • Ginsburg D, Konkle BA, Gill JC et al. (1989) Molecular basis of human von Willebrand disease: analysis of platelet von Willebrand factor mRNA. Proc Natl Acad Sci 86: 3723–3727

    PubMed  CAS  Google Scholar 

  • Godyna S, Diaz-Ricart M, Argraves WS (1996) Fibulin-l mediates platelet adhesion via a bridge of fibrinogen. Blood 88: 2569–2577

    PubMed  CAS  Google Scholar 

  • Goetinck PF, Stirpe NS, Tsonis PA, Carlone D (1987) The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid. J Cell Biol 105: 2403–248

    PubMed  CAS  Google Scholar 

  • Handford PA, Downing AK, Reinhardt DP, Sakai LY (2000) Fibrillin: from domain structure to supramolecular assembly. Matrix Biol 19: 457–470

    PubMed  CAS  Google Scholar 

  • Hauser N, Paulsson M, Heinegard D, Morgelin M (1996) Interaction of cartilage matrix protein with aggrecan. Increased covalent cross-linking with tissue maturation. J Biol Chem 271: 32.247–32.252

    Google Scholar 

  • Hayashi M, Yamada KM (1983) Domain structure of the carboxyl-terminal half of human plasma fibronectin. J Biol Chem 258: 3332–3340

    PubMed  CAS  Google Scholar 

  • Helbling-Leclerc A, Zhang X, Topaloglu H et al. (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 11: 216–218

    PubMed  CAS  Google Scholar 

  • Hershberger RP, Culp LA (1990) Cell-type-specific expression of alternatively spliced human fibronectin IIICS mRNAs. Mol Cell Biol 10: 662–671

    PubMed  CAS  Google Scholar 

  • Hohenester E, Maurer P, Hohenadl C, Timpl R, Jansonius JN, Engel J (1996) Structure of a novel extracellular Ca(2+)binding module in BM-40. Nat Struct Biol 3: 67–73

    PubMed  CAS  Google Scholar 

  • Holmgren SK, Taylor KM, Bretscher LE, Raines RT (1998) Code for collagen’s stability deciphered. Nature 392: 666–667

    PubMed  CAS  Google Scholar 

  • Hörmann H, Richter H (1986) Models for the subunit arrangement in soluble and aggregated plasma fibronectin. Biopolymers 25: 947–958

    PubMed  Google Scholar 

  • Huang S, Cao Z, Davie EW (1993a) The role of amino-terminal disulfide bonds in the structure and assembly of human fibrinogen. Biochem Biophys Res Commun 190: 488–495

    PubMed  CAS  Google Scholar 

  • Huang S, Mulvihill ER, Farrell DH, Chung DW, Davie EW (1993b) Biosynthesis of human fibrinogen. Subunit interactions and potential intermediates in the assembly. J Biol Chem 268: 8919–8926

    PubMed  CAS  Google Scholar 

  • Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268: 26.033–26.036

    Google Scholar 

  • Hulmes DJS (1992) The collagen super family: diverse structures and assemblies. Essays Biochem 27: 49–67

    PubMed  CAS  Google Scholar 

  • Hunt LT, Barker WC, Chen HR (1987) A domain structure common to hemopexin, vitronectin, interstitial collagenase, and a collagenase homolog. Protein Seq Data Anal 1: 21–6

    PubMed  CAS  Google Scholar 

  • Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317: 59–64

    PubMed  CAS  Google Scholar 

  • Hynes RO (1990) Fibronectins. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ingham KC, Brew SA, Migliorini MM (1989) Further localization of the gelatin-binding determinants within fibronectin. Active fragments devoid of type 11 homologous repeat modules. J Biol Chem 264: 16.977–16.980

    Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67: 609–652

    PubMed  CAS  Google Scholar 

  • Iozzo RV (1999) The biology of the smalileucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274: 18.843–18.846

    Google Scholar 

  • Iozzo RV, Murdoch AD (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J 10: 598–614

    Google Scholar 

  • Iozzo RV, Cohen IR, Grassei S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302: 625–639

    PubMed  CAS  Google Scholar 

  • Izumi M, Yamada KM, Hayashi M (1989) Vitronectin exists in two structurally and functionally distinct forms in human plasma. Biochim Biophys Acta 990: 101–108

    PubMed  CAS  Google Scholar 

  • Jenkins RN, Osborne-Lawrence SL, Sinclair AK et al. (1990) Structure and chromosomal location of the human gene encoding cartilage matrix protein. J Biol Chem 265: 19.624–19.631

    Google Scholar 

  • Jilek F, Hörmann H (1979) Fibronectin (cold-insoluble globulin), VI. Influence of heparin and hyaluronic acid on the binding of native collagen. Hoppe Seylers Z Physiol Chem 360: 597–603

    PubMed  CAS  Google Scholar 

  • Jobsis GJ, Keizers H, Vreijling JP et al. (1996) Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14: 113–115

    PubMed  CAS  Google Scholar 

  • Jones PL, Jones FS (2000) Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19: 581–596

    PubMed  CAS  Google Scholar 

  • Juvonen M, Pihlajaniemi T, Autio-Harmainen H (1993) Location and alternative splicing of type XIII collagen RNA in the early human placenta. Lab Invest 69: 541–551

    PubMed  CAS  Google Scholar 

  • Keating MT (1995) Genetic approaches to cardiovascular disease. Supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome. Circulation 92: 142147

    Google Scholar 

  • Kellokumpu S, Sormunen R, Heikkinen J, Myllyla R (1994) Lysyl hydroxylase, a collagen processing enzyme, exemplifies a novel dass of luminally-oriented peripheral membrane proteins in the endoplasmic reticulum. J Biol Chem 269: 30.524–30.529

    Google Scholar 

  • Kiss I, Deak F, Holloway RG et al. (1989) Structure of the gene for cartilage matrix protein, a modular protein of the extracellular matrix. Exon/intron organization, unusual splice sites, and relation to alpha chains of beta 2 integrins, von Willebrand factor, complement factors B and C2, and epidermal growth factor. J Biol Chem 264: 8126–8134

    PubMed  CAS  Google Scholar 

  • Kivirikko KI, Myllyla R (1985) Post-translational processing of procollagens. Ann NY Acad Sci 460: 187–201

    PubMed  CAS  Google Scholar 

  • Kivirikko KI, Myllyla R, Pihlajaniemi T (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 3: 1609–1617

    PubMed  CAS  Google Scholar 

  • Klein G, Ekblom M, Fecker L, Timpl R, Ekblom P (1990) Differential expression of laminin A and B chains during development of embryonic mouse organs. Development 110: 823–837

    PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19: 415–421

    PubMed  CAS  Google Scholar 

  • Kohfeldt E, Sasaki T, Gohring W, Timpl R (1998) Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol 282: 99–109

    PubMed  CAS  Google Scholar 

  • Kretsinger RH (1976) Caleium-binding proteins. Annu Rev Biochem 45: 239–266

    PubMed  CAS  Google Scholar 

  • Kühn K (1987) The dassical collagens: types I, H and HI. In: Mayne R, Burgeson RE (eds) Structure and function of collagen Types. Academic Press, San Diego, pp 1–42

    Google Scholar 

  • Kühn K (1994) Basement membrane (type IV) collagen. Matrix Biol 14: 439–445

    Google Scholar 

  • Kühn K, Eble J (1994) The structural basis of integrin-ligand interactions. Trends Cell Biol 4: 256–261

    PubMed  Google Scholar 

  • Kuivaniemi H, Tromp G, Prockop DJ (1997) Mutations in fibrillar collagens (types I, II, III, and XI), fibril-assoeiated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum Mutat 9: 300–315

    PubMed  CAS  Google Scholar 

  • Lacey DL, Erdmann JM, Teitelbaum SL, Tan HL, Ohara J, Shioi A (1995) Interleukin 4, interferon-gamma, and prostagiandin E impact the osteoclastic cell-forming potential of murine bone marrow macrophages. Endocrinology 136: 2367–2376

    PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan HL et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteodast differentiation and activation. Cell 93: 165–176

    PubMed  CAS  Google Scholar 

  • Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8: 163–173

    PubMed  CAS  Google Scholar 

  • Lane TF, Iruela-Arispe ML, Johnson RS, Sage EH (1994) SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol 125: 929–943

    PubMed  CAS  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6: 2397–404

    PubMed  CAS  Google Scholar 

  • Lawler J, Weinstein R, Hynes RO (1988) Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol 107: 2351–2361

    PubMed  CAS  Google Scholar 

  • Lawler J, Duquette M, Whittaker CA, Adams JC, McHenry K, DeSimone DW (1993) Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family. J Cell Biol 120: 1059–1067

    PubMed  CAS  Google Scholar 

  • LeBaron RG, Zimmermann DR, Ruoslahti E (1992) Hyaluronate binding properties of versican. J Biol Chem 267: 10.003–10.010

    Google Scholar 

  • Lecka-Czernik B, Moerman EJ, Jones RA, Goldstein S (1996) Identification of gene sequences overexpressed in senescent and Werner syndrome human fibroblasts. Exp Gerontol 31: 159–174

    PubMed  CAS  Google Scholar 

  • Lewis SD, Shields PP, Shafer JA (1985) Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly offibrin. J Biol Chem 260: 10.192–10.199

    Google Scholar 

  • Linsenmayer TF, Fitch JM, Birk DE (1990) Heterotypic collagen fibrils and stabilizing collagens. Controlling elements in corneal morphogenesis? Ann N Y Acad Sci 580: 143–160

    PubMed  CAS  Google Scholar 

  • Lukens LN (1976) Time of occurrence of disulfide linking between pro collagen chains. J Biol Chem 251: 3530–3538

    PubMed  CAS  Google Scholar 

  • Main AL, Harvey TS, Baron M, Boyd J, Campbell ID (1992) The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 7l: 671–678

    Google Scholar 

  • Mann K, Deutzmann R, Aumailley M et al. (1989) Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells. EMBO J 8: 65–72

    PubMed  CAS  Google Scholar 

  • Marchant JK, Hahn RA, Linsenmayer TF, Birk DE (1996) Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J Cell Biol 135: 1415–1426

    PubMed  CAS  Google Scholar 

  • Margolis RU, Margolis RK (1994) Aggrecan-versican-neurocan family proteoglycans. Methods Enzymol 245: 105–126

    PubMed  CAS  Google Scholar 

  • Marshall JF, Rutherford DC, McCartney AC, Mitjans F, Goodman SL, Hart IR (1995) Alpha v beta 1 is a receptor for vitronectin and fibrinogen, and acts with alpha 5 beta 1 to mediate spreading on fibronectin. J Cell Sci 108: 1227–1238

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Saga Y, Ikemura T, Sakakura T, Chiquet Ehrismann R (1994) The distribution of tenasein-X is distinct and often reeiprocal to that of tenasein-C. J Cell Biol 125: 483–493

    PubMed  CAS  Google Scholar 

  • Mayer U, Timpl R (1994) Nidogen, a versatile binding protein of basement membranes. In: Yurchenco PD, Birk D, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, Orlando, FL, pp 389–416

    Google Scholar 

  • Mayne R, Brewton RG (1993) New members of the collagen superfamily. Curr Biol 5: 883–890

    CAS  Google Scholar 

  • Mayne R, Brewton RG, Mayne PM, Baker JR (1993) Isolation and characterization of the chains of type V/type XI collagen present in bovine vitreous. J Biol Chem 268: 9381–9386

    PubMed  CAS  Google Scholar 

  • McDonald JA, Quade BJ, Broekelmann TJ et al. (1987) Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J Biol Chem 262: 2957–2967

    PubMed  CAS  Google Scholar 

  • McKeown-Longo PJ, Mosher DF (1985) Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol 100: 364–374

    PubMed  CAS  Google Scholar 

  • Mecham RP, Davies EC (1994) Elastic fiber structure and assembly. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, San Diego, pp 281–314

    Google Scholar 

  • Milewicz DM, Urban Z, Boyd C (2000) Genetic dis orders of the elastic fiber system. Matrix Biol 19: 471–480

    PubMed  CAS  Google Scholar 

  • Miner JH, Patton BL, Lentz SI et al. (1997) The laminin alpha chains: expression, developmental transitions, and chromosomallocations of alpha 1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J Cell Biol 137: 685–701

    PubMed  CAS  Google Scholar 

  • Miosge N, Gotz W, Sasaki T, Chu ML, Timpl R, Herken R (1996) The extracellular matrix proteins fibulin-l and fibulin-2 in the early human embryo. Histochem J 28: 109–116

    PubMed  CAS  Google Scholar 

  • Miyagoe Y, Hanaoka K, Nonaka I et al. (1997) Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-defieient congenital muscular dystrophy. FEBS Lett 415: 33–39

    PubMed  CAS  Google Scholar 

  • Moore MA, Gotoh Y, Rafidi K, Gerstenfeld LC (1991) Characterization of a cDNA for chicken osteopontin: expression during bone development, osteoblast differentiation, and tissue distribution. Biochemistry (Mosc) 30: 2501–2508

    CAS  Google Scholar 

  • Mundlos S, Olsen BR (1997) Heritable diseases of the skeleton. Part 11: Molecular insights into skeletal developmentmatrix components and their homeostasis. FASEB J 11: 227–233

    PubMed  CAS  Google Scholar 

  • Muragaki Y, Mariman EC, Beersum SE van et al. (1996) A mutation in the gene encoding the alpha 2 chain of the fibril-assoeiated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM 2). Nat Genet 12: 103–105

    PubMed  CAS  Google Scholar 

  • Murphy-Ullrich JE, Lane TF, Pallero MA, Sage EH (1995) SPARC mediates focal adhesion disassembly in endothelial ceUs through a follistatin-like region and the Ca(2+)binding EF-hand. J Cell Biochem 57: 341–350

    PubMed  CAS  Google Scholar 

  • Murshed M, Smyth N, Miosge N et al. (2000) The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol 20: 7007–7012

    PubMed  CAS  Google Scholar 

  • Myers JC, Yang H, D’Ippolito JA, Presente A, Miller MK, Dion AS (1994) The triple-helical region of human type XIX collagen consists of multiple collagenous subdomains and exhibits limited sequence homology to alpha I(XVI). J Biol Chem 269: 18.549–18.557

    Google Scholar 

  • Nasu K, Ishida T, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S (1995) Expression of wild-type and mutated rabbit osteopontin in Escherichia coli, and their effects on adhesion and migration of P388D1 cells. Biochem J 307: 257–265

    PubMed  CAS  Google Scholar 

  • Nishimura I, Muragaki Y, Olsen BR (1989) Tissue-specific forms of type IX collagen-proteoglycan arise from the use of two widely separated promoters. J Biol Chem 264: 20.033–20.041

    Google Scholar 

  • Niyibizi C, Eyre DR (1994) Structural characteristics of cross-linking sites in type V collagen of bone. Chain speeifieities and heterotypic links to type I collagen. Eur J Biochem 224: 943–950

    PubMed  CAS  Google Scholar 

  • Noakes PG, Gautarn M, Mudd J, Sanes JR, Merlie JP (1995a) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374: 258–262

    PubMed  CAS  Google Scholar 

  • Noakes PG, Miner JH, Gautarn M, Cunningham JM, Sanes JR, Merlie JP (1995b) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 10: 400–406

    PubMed  CAS  Google Scholar 

  • Norenberg U, Wille H, Wolff JM, Frank R, Rathjen FG (1992) The chicken neural extraceUular matrix molecule restrictin: similarity with EGF-, fibronectin type III-, and fibrinogen-like motifs. Neuron 8: 849–863

    PubMed  CAS  Google Scholar 

  • Obara M, Kang MS, Yamada KM (1988) Site-directed mutagenesis of the ceU-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53: 649–657

    PubMed  CAS  Google Scholar 

  • Oh SP, Kamagata Y, Muragaki Y, Timmons S, Ooshima A, Olsen BR (1994) Isolation and sequeneing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc Natl Acad Sci USA 91: 4229–4233

    PubMed  CAS  Google Scholar 

  • Oldberg A, Antonsson P, Lindbiom K, Heinegard D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem 267: 22.346–22.350

    Google Scholar 

  • Olsen BR (1995) New insights into the function of collagens from genetic analysis. Curr Opin Cell Biol 7: 720–727

    PubMed  CAS  Google Scholar 

  • Olsen BR (1999) Life without perlecan has its problems. J Cell Biol 147: 909–912

    PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285

    PubMed  Google Scholar 

  • Oyama F, Murata Y, Suganuma N, Kimura T, Titani K, Sekiguchi K (1989) Patterns of alternative splieing of fibronectin pre-mRNA in human adult and fetal tissues. Biochemistry (Mosc) 28: 1428–1434

    CAS  Google Scholar 

  • Pan TC, Zhang RZ, Mattei MG, Timpl R, Chu ML (1992) Cloning and chromosomal location of human alpha I(XVI) collagen. Proc Natl Acad Sci USA 89: 6565–6569

    PubMed  CAS  Google Scholar 

  • Pan TC, Kluge M, Zhang RZ, Mayer U, Timpl R, Chu ML (1993) Sequence of extraceUular mouse protein BM-90/fibulin and its caleium-dependent binding to other basement-membrane ligands. Eur J Biochem 215: 733–740

    PubMed  CAS  Google Scholar 

  • Parente MG, Chung LC, Ryynanen J et al. (1991) Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc Natl Acad Sci USA 88: 6931–6935

    PubMed  CAS  Google Scholar 

  • Pareti PI, Niiya K, McPherson JM, Ruggeri ZM (1987) Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types land III. J Biol Chem 262: 13.835–13.841

    Google Scholar 

  • Paulsson M (1996) Biosynthesis, tissue distribution and isolation of laminins. In: Ekblom P, Timpl R (eds) The laminins. Harwood Academic Publishers, Reading, MA, pp 1–25

    Google Scholar 

  • Paulsson M, Heinegard D (1982) Radioimmunoassay of the 148-kilodalton cartilage protein. Distribution of the protein among bovine tissues. Biochem J 207: 207–213

    PubMed  CAS  Google Scholar 

  • Paulsson M, Dziadek M, Suchanek C, Huttner WB, Timpl R (1985) Nature of sulphated macromolecules in mouse Reichert’s membrane. Evidence for tyrosine O-sulphate in basement-membrane proteins. Biochem J 231: 57l–579

    Google Scholar 

  • Peters DMP, Mosher DF (1994) Formation of fibronectin extracellular matrix. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, San Diego, pp 315–350

    Google Scholar 

  • Pierschbacher MD, Hayman EG, Ruoslahti E (1981) Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell 26: 259–267

    PubMed  CAS  Google Scholar 

  • Pihlajaniemi T, Rehn M (1995) Two new collagen subgroups: membrane-assoeiated collagens and types XV and XVII. Prog Nucleic Aeid Res Mol Biol 50: 225–262

    CAS  Google Scholar 

  • Podack ER, Kolb WP, Muller-Eberhard HJ (1977) The SC5b-7 complex: formation, isolation, properties, and subunit composition. J Immunol 119: 2024–2029

    PubMed  CAS  Google Scholar 

  • Pöschl E, Mayer U, Stetefeld J et al. (1996) Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gammal chain. EMBO J 15: 5154–5159

    PubMed  Google Scholar 

  • Preissner KT (1991) Structure and biological role of vitronectin. Annu Rev Cell Biol 7: 275–310

    PubMed  CAS  Google Scholar 

  • Preissner KT, Müller-Berghaus G (1987) Neutralization and binding of heparin by S protein/vitronectin in the inhibition of factor Xa by antithrombin III. Involvement of an inducible heparin-binding domain of S protein/vitronectin. J Biol Chem 262: 12.247–12.253

    Google Scholar 

  • Prockop DJ, Hulmes DJS (1994) Assembly of collagen fibrils de novo from soluble precursors: polymerization and copolymerization of procollagen, pN-collagen and mutated collagens. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, San Diego, pp 47–90

    Google Scholar 

  • Pulkkinen L, Christiano AM, Airenne T, Haakana H, Tryggvason K, Uitto J (1994a) Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat Genet 6: 293–297

    PubMed  CAS  Google Scholar 

  • Pulkkinen L, Christiano AM, Gerecke D et al. (1994b) A homozygous nonsense mutation in the beta 3 chain gene of laminin 5 (LAMB3) in Herlitz junctional epidermolysis bullosa. Genomics 24: 357–360

    PubMed  CAS  Google Scholar 

  • Qabar A, Derick L, Lawler J, Dixit V (1995) Thrombospondin 3 is a pentameric molecule held together by interchain disulfide linkage involving two cysteine residues. J Biol Chem 270: 12.725–12.729

    Google Scholar 

  • Rathjen FG, Wolff JM, Chiquet-Ehrismann R (1991) Restrictin: a chick neural extracellular matrix protein involved in cell attachment co-purifies with the cell recognition molecule F11. Development 113: 151–164

    PubMed  CAS  Google Scholar 

  • Rauch U, Karthikeyan L, Maurel P, Margolis RU, Margolis RK (1992) Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem 267: 19.536–19.547

    Google Scholar 

  • Reinhardt DP, Keene DR, Corson GM et al. (1996) Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol 258: 104–116

    PubMed  CAS  Google Scholar 

  • Reinhardt DP, Ono RN, Notbohm H, Muller PK, Bachinger HP, Sakai LY (2000) Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis. A potential disease-causing mechanism in Marfan syndrome. J Biol Chem 275: 12.339–12.345

    Google Scholar 

  • Reiser K, McCormick RJ, Rucker RB (1992) Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J 6: 2439–2449

    PubMed  CAS  Google Scholar 

  • Rich A, Crick FCH (1961) The molecular structure of collagen. J Mol Biol 3: 483–508

    PubMed  CAS  Google Scholar 

  • Roark EF, Keene DR, Haudenschild CC, Godyna S, Little CD, Argraves WS (1995) The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J Histochem Cytochem 43: 401–411

    PubMed  CAS  Google Scholar 

  • Roberts DD (1996) Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J 10: 1183–1191

    PubMed  CAS  Google Scholar 

  • Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28: 385–397

    PubMed  CAS  Google Scholar 

  • Ruegg MA (1996) Agrin, laminin beta 2 (s-laminin) and ARIA: their role in neuromuscular development. Curr Opin Neurobiol 6: 97–103

    PubMed  CAS  Google Scholar 

  • Ruggeri ZM, Ware J (1993) von Willebrand factor. FASEB J 7: 308–316

    PubMed  CAS  Google Scholar 

  • Sage H, Bornstein P (1995) Matrix components produced by endothelial cells: type VIII collagen, SPARC and thrombospondin. In: Haralson MA, HasseIl JR (eds) Extracellular matrix. A practical approach. ERL Press, Oxford, pp 131–160

    Google Scholar 

  • Sakai LY, Keene DR, Engvall E (1986) Fibrilin, a new 350 kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103: 2499–2509

    PubMed  CAS  Google Scholar 

  • Sane DC, Moser TL, Parker CJ, Seiffert D, Loskutoff DJ, Greenberg CS (1990) Highly sulfated glycosaminoglycans augment the cross-linking of vitronectin by guinea pig liver trans glutamin ase. Functional studies of the crosslinked vitronectin multimers. J Biol Chem 265: 3543–3548

    PubMed  CAS  Google Scholar 

  • Sasaki T, Gohring W, Pan TC, Chu ML, Timpl R (1995) Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol 254: 892–899

    PubMed  CAS  Google Scholar 

  • Sasaki T, Mann K, Wiedemann H et al. (1997) Dimer model for the microfibrillar protein fibulin-2 and identification of the connecting disulfide bridge. EMBO J 16: 3035–3043

    Google Scholar 

  • Savage B, Ruggeri ZM (1991) Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein IIb-IIIa on nonactivated platelets. J Biol Chem 266: 11.227–11.233

    Google Scholar 

  • Sawada H, Konomi H, Hirosawa K (1990) Characterization of the collagen in the hexagonal lattice of Descemet’s membrane: its relation to type VIII collagen. J Cell Biol 110: 219–227

    PubMed  CAS  Google Scholar 

  • Saxne T, Zunino L, Heinegard D (1995) Increased release of bone sialoprotein into synovial fluid reflects tissue destruction in rheumatoid arthritis. Arthritis Rheum 38: 82–90

    PubMed  CAS  Google Scholar 

  • Scott JE (1996) Proteodermatan and proteokeratan sulfate (decorin, lumicanlfibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry (Mosc) 35: 8795–8799

    CAS  Google Scholar 

  • Scott JE, Orford CR (1981) Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem J 197: 213–216

    PubMed  CAS  Google Scholar 

  • Seidl M, Hormann H (1983) Affinity chromatography on immobilized fibrin monomer, IV. Two fibrin-bin ding peptides of a chymotryptic digest of human plasma fibronectin. Hoppe Seylers Z Physiol Chem 364: 83–92

    PubMed  CAS  Google Scholar 

  • Seiffert D, Loskutoff DJ (1991) Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. J Biol Chem 266: 2824–2830

    PubMed  CAS  Google Scholar 

  • Sherman L, Sleeman J, Herrlich P, Ponta H (1994) Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6: 726–733

    PubMed  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319

    PubMed  CAS  Google Scholar 

  • Skorstengaard K, Jensen MS, Petersen TE, Magnusson S (1986) Purification and complete primary structures of the heparin-, cell-, and DNA-binding domains of bovine plasma fibronectin. Eur J Biochem 154: 15–29

    PubMed  CAS  Google Scholar 

  • Smith DE, Furcht LT (1982) Localization of two unique heparin bin ding domains of human plasma fibronectin with monoclonal antibodies. J Biol Chem 257: 6518–6523

    PubMed  CAS  Google Scholar 

  • Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962

    PubMed  CAS  Google Scholar 

  • Smith LL, Cheung HK, Ling LE et al. (1996) Osteopontin Nterminal domain contains a cryptie adhesive sequence recognized by alpha9beta1 integrin. J Biol Chem 271: 28.485–28.491

    Google Scholar 

  • Spring J, Beck K, Chiquet-Ehrismann R (1989) Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell 59: 325–334

    PubMed  CAS  Google Scholar 

  • Stubbs JT, Mintz KP, Eanes ED, Torchia DA, Fisher LW (1997) Characterization of native and recombinant bone sialoprotein: delineation of the mineral-binding and cell adhesion domains and structural analysis of the RGD domain. J Bone Miner Res 12: 1210–1222

    PubMed  CAS  Google Scholar 

  • Suzuki S, Oldberg A, Hayman EG, Pierschbacher MD, Ruoslahti E (1985) Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J 4: 2519–2524

    PubMed  CAS  Google Scholar 

  • Takagi J, Fujisawa T, Sekiya F, Saito Y (1991) Collagen-binding domain within bovine propolypeptide of von Willebrand factor. J Biol Chem 266: 5575–5579

    PubMed  CAS  Google Scholar 

  • Thiagarajan P, Kelly K (1988) Interaction of thrombin-stimulated platelets with vitronectin (S-protein of complement) substrate: inhibition by a monoclonal antibody to glycoprotein IIb-IIIa complex. Thromb Haemost 60: 514–517

    PubMed  CAS  Google Scholar 

  • Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18: 123–132

    PubMed  CAS  Google Scholar 

  • Timpl R, Chu ML (1994) Mierofibrillar collagen type VI. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, San Diego, pp 207–242

    Google Scholar 

  • Timpl R, Engel J (1987) Type VI collagen. In: Mayne R, Burgeson RE (eds) Structure and function of collagen types. Academic Press, San Diego, pp 105–143

    Google Scholar 

  • Tolsma SS, Volpert OY, Good DJ, Frazier WA, Polverini PJ, Bouck N (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122: 497–511

    PubMed  CAS  Google Scholar 

  • Tomasini BR, Mosher DF (1991) Vitronectin. Prog Hemost Thromb 10: 269–305

    PubMed  CAS  Google Scholar 

  • Tondravi MM, Winterbottom N, Haudenschild DR, Goetinck PF (1993) Cartilage matrix protein binds to collagen and plays a role in collagen fibrillogenesis. Prog Clin Biol Res 383B: 515–522

    PubMed  CAS  Google Scholar 

  • Tran H, Mattei M, Godyna S, Argraves WS (1997) Human fibulin-ID: molecular cloning, expression and similarity with SI-5 protein, a new member of the fibulin gene family. Matrix Biol 15: 479–493

    PubMed  CAS  Google Scholar 

  • Turitto VT, Weiss HJ, Zimmerman TS, Sussman II (1985) Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 65: 823–831

    PubMed  CAS  Google Scholar 

  • Uitto J, Pulkkinen L, Christiano AM (1994) Molecular basis of the dystrophie and junctional forms of epidermolysis bullosa: mutations in the type VII collagen and kalinin (laminin 5) genes. J Invest Dermatol 103: 39S–46S

    PubMed  CAS  Google Scholar 

  • Van der Rest M, Bruckner P (1994) Collagens: diversity at the molecular and supramolecular levels. Current Opin Struct Biol 3: 430–436

    Google Scholar 

  • Van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5: 2814–2823

    PubMed  Google Scholar 

  • Vaughan L, Mendler M, Huber S et al. (1988) D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol 106: 991–997

    PubMed  CAS  Google Scholar 

  • Vidal F, Baudoin C, Miquel C et al. (1995) Cloning of the laminin alpha 3 chain gene (LAMA3) and identification of a homozygous deletion in a patient with Herlitz junctional epidermolysis bullosa. Genomics 30: 273–280

    PubMed  CAS  Google Scholar 

  • Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223: 587–597

    PubMed  CAS  Google Scholar 

  • Voorberg J, Fontijn R, Calafat J, Janssen H, Mourik JA van, Pannekoek H (1991) Assembly and routing of von Willebrand factor variants: the requirements for disulfidelinked dimerization reside within the carboxy-terminal 151 amino acids. J Cell Biol 113: 195–205

    PubMed  CAS  Google Scholar 

  • Vos HL, Devarayalu S, Vries Y de, Bornstein P (1992) Thrombospondin 3 (Thbs3), a new member of the thrombospondin gene family. J Biol Chem 267: 12.192–12.196

    Google Scholar 

  • Vuento M, Vartio T, Saraste M, Bonsdorff CH von, Vaheri A (1980) Spontaneous and polyamine-induced formation of filamentous polymers from soluble fibronectin. Eur J Biochem 105: 33–42

    PubMed  CAS  Google Scholar 

  • Waltregny D, Bellahcene A, Van Riet I et al. (1998) Prognostic value of bone sialoprotein expression in clinically 10-calized human prostate cancer. J Natl Cancer Inst 90: 1000–1008

    PubMed  CAS  Google Scholar 

  • Ware JL, Ruggeri ZM (1995) In: High KA, Roberts S (eds) Molecular basis of thrombosis and hemostasis. Marcel Dekker, New York, pp 197–214

    Google Scholar 

  • Ware J, Dent JA, Azuma H et al. (1991) Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand factor affinity for the platelet membrane glycoprotein Ib-IX receptor. Proc Natl Acad Sci USA 88: 2946–2950

    PubMed  CAS  Google Scholar 

  • Warman ML, Abbott M, Apte SS et al. (1993) A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet 5: 79–82

    PubMed  CAS  Google Scholar 

  • Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272: 13997–14000

    PubMed  CAS  Google Scholar 

  • Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y (1994) Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versiean family. J Biol chem 269: 10.119–10.126

    Google Scholar 

  • Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346: 281–284

    PubMed  CAS  Google Scholar 

  • Yurchenco PD, Cheng YS (1993) Self-assembly and calciumbinding sites in laminin. A three-arm interaction model. J Biol Chem 268: 17.286–17.299

    Google Scholar 

  • Zhang H, Apfelroth SD, Hu W et al. (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastie matrices. J Cell Biol 124: 855–863

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kühn, K. (2003). Die Komponenten der extrazellulären Matrix, ihre Struktur und Funktion. In: Ganten, D., Ruckpaul, K., Gay, S., Kalden, J.R. (eds) Molekularmedizinische Grundlagen von rheumatischen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55803-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55803-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62855-9

  • Online ISBN: 978-3-642-55803-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics