Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 144 Accesses

Zusammenfassung

Mit der Vollendung des humanen Genomprojekts stehen Sequenzinformationen für etwa 35000 menschliche Gene zur Verfügung (McPherson et al. 2001; Venter et al. 2001). Parallel zum menschlichen Genom konnte bis heute für zahlreiche weitere Organismen das Genom ganz oder teilweise sequenziert werden. Allerdings sind von der Mehrzahl der menschlichen Gene nur partielle Sequenzen (expressed sequence tags, EST) bekannt, wobei die meisten EST für Gene mit bisher nicht näher untersuchten biologischen Eigenschaften kodieren.

Unterstützt durch einen Forschungskredit der Universität Zürich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 114.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alizadeh AA, Eisen MB, Davis RE et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression proflling. Nature 403: 503–511

    Article  PubMed  CAS  Google Scholar 

  • Bowtell DD (1999) Options available — from start to finish — for obtaining expression data by microarray. Nat Genet 21: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Brazma A, Vilo J (2000) Gene expression data analysis. FEBS Lett 480: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J et al. (2001) Minimum information about a microarray experiment (MIAME) — toward standards for microarray data. Nat Genet 29: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G (1999) Making and reading microarrays. Nat Genet 21:15–19

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Oliver B (2001) Sex, flies and microarrays. Nat Genet 29: 355–356

    Article  PubMed  CAS  Google Scholar 

  • Desaj S, Hili J, Trelogan S, Diatchenko L, Siebert PD (2000) Identification of differentially expressed genes by suppression subtractive hybridization. In: Hunt SP, Livesey FJ (eds) Functional genomics. Oxford University Press, Oxford New York, pp 81–112

    Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-speeific cDNA probes and libraries. Proc Natl Acad Sei USA 93: 6025–6030

    Article  CAS  Google Scholar 

  • Distler J, Hirth A, Scheid A et al. (2002) Gene profiling of scleroderma fibroblasts after exposure to hypoxia. Ann Rheum Dis 61

    Google Scholar 

  • Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21: 10–14

    Article  PubMed  CAS  Google Scholar 

  • Firestein GS, Pisetsky DS (2002) DNA microarrays: boundless technology or bound by technology? Guidelines for studies using microarray technology. Arthritis Rheum 46: 859–861

    Article  PubMed  Google Scholar 

  • Frost, Sullivan (2001) The World biochip market. Report 7761, http://www.frost.com

    Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene sileneing by double-stranded RNA. Nat Rev Genet 2: 110–119

    Article  PubMed  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6: 986–994

    Article  PubMed  CAS  Google Scholar 

  • Hieter P, Boguski M (1997) Functional genomics: it’s all how you read it. Seience 278: 601–602

    Article  CAS  Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of speeific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sei USA 88:7276–7280

    Article  CAS  Google Scholar 

  • Knight J (2001) When the chips are down. Nature 410: 860–861

    Article  PubMed  CAS  Google Scholar 

  • Lechner S, Muller-Ladner U, Neumann E et al. (2001) Use of simplified transcriptors for the analysis of gene expression profiles in laser-microdissected cell populations. Lab Invest 81: 1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gu W, Mohan S, Baylink DJ (2002) DNA microarrays: their use and misuse. Microeirculation 9: 13–22

    Article  CAS  Google Scholar 

  • Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21: 20–24

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Lukyanov KA, Launer GA, Tarabykin VS, Zaraisky AG, Lukyanov SA (1995) Inverted terminal repeats permit the average length of amplified DNA fragments to be regulated during preparation of cDNA libraries by polymerase chain reaction. Anal Biochem 229: 198–202

    Article  PubMed  CAS  Google Scholar 

  • McPherson JD, Marra M, Hillier L et al. (2001) A physical map of the human genome. Nature 409: 934–941

    Article  PubMed  CAS  Google Scholar 

  • Mills JC, Roth KA, Cagan RL, Gordon JI (2001) DNA microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 3: E175–E178

    Article  PubMed  CAS  Google Scholar 

  • Mousses S, Bittner ML, Chen Y et al. (2000) Gene expression analysis by cDNA microarray. In: Hunt SP, Livesey FJ (eds) Functional genomics. Oxford Press, Oxford New York, pp 113–138

    Google Scholar 

  • Mueller BM, Yu YB, Laug WE (1995) Overexpression of plasminogen activator inhibitor 2 in human melanoma cells inhibits spontaneous metastasis in scid/scid mice. Proc Natl Acad Sci USA 92: 205–209

    Article  PubMed  CAS  Google Scholar 

  • Muller-Ladner U, Kriegsmann J, Franklin BN et al. (1996) Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 149: 1607–1615

    PubMed  CAS  Google Scholar 

  • Neidhart M, Rethage J, Kuchen S et al. (2000) Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: assoeiation with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 43: 2634–2647

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Kullmann F, Judex M et al. (2002) Identification of differentially expressed genes in rheumatoid arthritis by a combination of complementary DNA array and RNA arbitrarily primed-polymerase chain reaction. Arthritis Rheum 46: 52–63

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Downward J (2001) Navigating gene expression using microarrays — a technology review. Nat Cell Biol 3: E190–E195

    Article  PubMed  CAS  Google Scholar 

  • Southern E, Mir K, Shchepinov M (1999) Molecular interactions on microarrays. Nat Genet 21: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Stein OD von, Thies WG, Hofmann M (1997) A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res 25: 2598–2602

    Article  Google Scholar 

  • Vandesompele J, De Paepe A, Speleman F (2002) Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal Biochem 303: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzier KW (1995) Serial analysis of gene expression. Science 270: 484–487

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al. (2001) The sequence of the human genome. Science 291: 1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Welsh J, Chada K, Dalal SS, Cheng R, Ralph D, McClelland M (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20: 4965–4970

    Article  PubMed  CAS  Google Scholar 

  • Woo TH, Patel BK, Cinco M et al. (1998) Real-time homogeneous assay of rapid cyde polymerase chain reaction product for identification of Leptonema illini. Anal Biochem 259: 112–117

    Article  PubMed  CAS  Google Scholar 

  • Wu TD (2001) Analysing gene expression data from DNA microarrays to identify candidate genes. J Pathol 195: 53–65

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Underwood LE, D’Ercole AJ (2001) Hepatic mRNAs up-regulated by starvation: an expression profile determined by suppression subtractive hybridization. FASEB J 15: 1261–1263

    Article  PubMed  CAS  Google Scholar 

  • Zhu YY, Machleder EM, Chenchilk A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-Iength cDNA library construction. Biotechniques 30: 892–897

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Distler, O. (2003). Genomics: Identifikation neuer und bekannter Gene. In: Ganten, D., Ruckpaul, K., Gay, S., Kalden, J.R. (eds) Molekularmedizinische Grundlagen von rheumatischen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55803-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55803-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62855-9

  • Online ISBN: 978-3-642-55803-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics