Skip to main content

Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data

  • Conference paper
Hierarchical and Geometrical Methods in Scientific Visualization

Abstract

Adaptive mesh refinement (AMR) is a numerical simulation technique used in computational fluid dynamics (CFD). This technique permits efficient simulation of phenomena characterized by substantially varying scales in complexity. By using a set of nested grids of different resolutions, AMR combines the simplicity of structured rectilinear grids with the possibility to adapt to local changes in complexity within the domain of a numerical simulation that otherwise requires the use of unstructured grids. Without proper interpolation at the boundaries of the nested grids of different levels of a hierarchy, discontinuities can arise. These discontinuities can lead, for example, to cracks in an extracted isosurface. Treating locations of data values given at the cell centers of AMR grids as vertices of a dual grid allows us to use the original data values of the cell-centered AMR data in a marching-cubes (MC) isosurface extraction scheme that expects vertex-centered data. The use of dual grids also induces gaps between grids of different hierarchy levels. We use an index-based tessellation approach to fill these gaps with “stitch cells.” By extending the standard MC approach to a finite set of stitch cells, we can define an isosurface extraction scheme that avoids cracks at level boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVS5. Product of Advanced Visual Systems, see http://www.avs.com/ products/AVS5/avs5.htm.

    Google Scholar 

  2. Marsha Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82:64–84, May 1989. Lawrence Livermore National Laboratory, Technical Report No. UCRL-97196.

    Article  MATH  Google Scholar 

  3. Marsha Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53:484–512, March 1984.

    Article  MathSciNet  MATH  Google Scholar 

  4. Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology. Computing in Science and Engineering, 1(2):46–53, March/April 1999.

    Article  MathSciNet  Google Scholar 

  5. L. Paul Chew. Constrained delaunay triangulations. Algorithmica, 4(1):97–108, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  6. Allen Van Gelder and Jane Wilhelms. Topological considerations in isosurface generation. ACM Transactions on Graphics, 13(4):337–375, October 1994.

    Article  Google Scholar 

  7. Markus H. Gross, Oliver G. Staadt, and Roger Gatti. Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer Graphics, 2(2):130–143, June 1996.

    Article  Google Scholar 

  8. Interactive Data Language (IDL). Product of Research Systems, Inc., see http: //www.rsinc.com/idl/index.cfm.

    Google Scholar 

  9. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics (SIGGRAPH’ 87 Proceedings), 21(4):163–169, July 1987.

    Article  Google Scholar 

  10. Kwan-Liu Ma. Parallel rendering of 3D AMR data on the SGI/Cray T3E. In: Proceedings of Frontiers’ 99 the Seventh Symposium on the Frontiers of Massively Parallel Computation, pages 138–145, IEEE Computer Society Press, Los Alamitos, California, February 1999.

    Google Scholar 

  11. Nelson L. Max. Sorting for polyhedron compositing. In: Hans Hagen, Heinrich Muäller, and Gregory M. Nielson, editors, Focus on Scientific Visualization, pages 259–268. Springer-Verlag, New York, New York, 1993.

    Chapter  Google Scholar 

  12. Gregory M. Nielson and Bernd Hamann. The asymptotic decider: Removing the ambiguity in marching cubes. In: Gregory M. Nielson and Larry J. Rosenblum, editors, IEEE Visualization’ 91, pages 83–91, IEEE Computer Society Press, Los Alamitos, California, 1991.

    Chapter  Google Scholar 

  13. Gregory M. Nielson, Dave Holiday, and Tom Roxborough. Cracking the cracking problem with coons patches. In: David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE Visualization’ 99, pages 285–290, 535, IEEE Computer Society Press, Los Alamitos, California, 1999.

    Google Scholar 

  14. Michael L. Norman, John M. Shalf, Stuart Levy, and Greg Daues. Diving deep: Data management and visualization strategies for adaptive mesh refinement simulations. Computing in Science and Engineering, 1(4):36–47, July/August 1999.

    Article  Google Scholar 

  15. William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The Visualization Toolkit, second edition, 1998. Prentice-Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  16. Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-based decimation of marching cubes surface. In: Roni Yagel and Gregory M. Nielson, editors, IEEE Visualization’ 96, pages 335–342, 499, IEEE Computer Society Press, Los Alamitos, California, October 1998.

    Google Scholar 

  17. Gunther H. Weber, Hans Hagen, Bernd Hamann, Kenneth I. Joy, Terry J. Ligocki, Kwan-Liu Ma, and John M. Shalf. Visualization of adaptive mesh refinement data. In: Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts, Craig M. Wittenbrink, and Matti Groehn, editors, Proceedings of the SPIE (Visual Data Exploration and Analysis VIII, San Jose, CA, USA, Jan 22–23), volume 4302, pages 121–132, SPIE — The International Society for Optical Engineering, Bellingham, WA, January 2001.

    Google Scholar 

  18. Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen, Bernd Hamann, and Kenneth I. Joy. Extraction of crack-free isosurfaces from adaptive mesh refinement data. In: David Ebert, Jean M. Favre, and Ronny Peikert, editors, Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization, Ascona, Switzerland, May 28–31, 2001, pages 25–34, 335, Springer Verlag, Wien, Austria, May 2001.

    Google Scholar 

  19. Rüdiger Westermann, Leif Kobbelt, and Thomas Ertl. Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Visual Computer, 15(2):100–111, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, G.H. et al. (2003). Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data. In: Farin, G., Hamann, B., Hagen, H. (eds) Hierarchical and Geometrical Methods in Scientific Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55787-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55787-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62801-6

  • Online ISBN: 978-3-642-55787-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics