Skip to main content

Mathematical Models for Polymer Crystallization Processes

  • Chapter
Book cover Mathematical Modelling for Polymer Processing

Part of the book series: Mathematics in Industry ((TECMI,volume 2))

Abstract

Polymer industry raises a large amount of relevant mathematical problems with respect to the quality of manufactured polymer parts. These include in particular questions about the crystallization kinetics of the polymer melt, in presence of a tem perature field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alfonso, Polimeri cristallini, in Fondamenti di Scienza dei Polimeri, (M. Guaita et al. Eds.), Pacini, Pisa, 1998.

    Google Scholar 

  2. L. Ambrosio, N. Fusco, D. Paliara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press Oxford, 2000.

    Google Scholar 

  3. M. Avrami, Kinetics of phase change. Part I, J. Chem. Phys., 7, 1103–112 (1939).

    Article  Google Scholar 

  4. P. Brémaud, Point Processesand Queues, Martingale Dynamics, Springer-Verlag, New York, 1981.

    Book  Google Scholar 

  5. M. Burger, Iterative regularization of an identification problem arising in polymer crystallization, SFB Report 99-21 (University of Linz, 1999), and SIAM J. of Numerical Analysis (submitted).

    Google Scholar 

  6. M. Burger, Direct and Inverse Problems in Polymer Crystallization Processes, PhD-Thesis, University of Linz, 2000.

    Google Scholar 

  7. M. Burger, V. Capasso, Mathematical modelling and simulation of nonisothermal crystallization of polymers. Math. Models and Methods in Appl. Sciences, 11 (2001), 1029–1053.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Burger, V. Capasso, G. Eder, Modelling crystallization of polymers in temperature fields Z. Angew. Math. Mech. 82 (2002), 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Burger, V. Capasso, H.W. Engl, Inverse problems related to crystallization of polymers, Inverse Problems 15 (1999), 155–173.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Burger, V. Capasso, A. Micheletti, Optimal control of polymer morphologies, Quaderno n. 11/2002, Dip. di Matematica, Universita di Milano, 2002.

    Google Scholar 

  11. M. Burger, V. Capasso, C. Salani, Modelling multidimensional crystallization of polymers in interaction with heat fransfer, Nonlinear Analysis: Real World Application, 3 (2002), 139–160.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Capasso, A. Micheletti, Stochastic geometry of birth-and-growth processes, Quadernon. 20/1997, Dip. di Matematica, Università di Milano, 1997.

    Google Scholar 

  13. V. Capasso, A. Micheletti, Birth-and-Growth stochastic processes modelling polymer crystallization Technical Report 14, Industrial Mathematics Institute, J. Kepler Universität, Linz, 1997.

    Google Scholar 

  14. V. Capasso, A. Micheletti, Local spherical contact distribution function and local mean densities for inhomogeneous random sets, Stachastics and Stoch. Rep., 71, (2000), 51–67.

    MathSciNet  MATH  Google Scholar 

  15. V. Capasso, A. Micheletti, The hazard function of an inhomogeneous birthand-growth process, Quaderno n.39/2001, Dip. di Matematica, Universita’ di Milano.

    Google Scholar 

  16. V. Capasso, A. Micheletti, M. Burger, Densities of n-facets of incomplete Johnson-Mehl tessellations generated by inhomogeneous birth-and-growth processes. Quaderno n.38/2001, Dip. di Matematica, Università di Milano.

    Google Scholar 

  17. V. Capasso, A. Micheletti, M. De Giosa, R. Mininni, Stochastic modelling and statistics of polymer crystallization processes, Surv. Math. Ind., 6, (1996), 109–132.

    MATH  Google Scholar 

  18. V. Capasso, C. Salani, Stochastic-birth-and-growth processes modelling crystallization of polymers with spatially heterogeneous parameters, Nonlinear Analysis: Real World Application, 1, (2000) pp. 485–498.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. A.C. Cressie, Statistics for Spatial Data, Wiley, New York, 1993.

    Google Scholar 

  20. G. Eder, Mathematical modelling of crystallization processes as occurring in polymer processing, Nonlinear Analysis 30 (1997), 3807–3815.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Eder, H. Jameschitz-Krieql, Structure development during processing: crystallization, in Materials Science and Technology, Vol. 18 (H. Meijer, Ed.), Verlag Chemie, Weinheim, 1997.

    Google Scholar 

  22. H. W. Engl, O. Scherzer, Convergence rate results for iterative methods for solving nonlinear ill-posed problems, in: D. Colton, H.W. Engl, J. McLaughlin, A. Louis, W. Rundell, eds., Surveys on Solution Methods for Inverse Problems (Springer, Vienna, New York, 2000).

    Google Scholar 

  23. V.R. Evans, The laws of expanding circles and spheres in relation to the lateral growth rate of surface films and the grain-size of metals, Trans. Faraday Soc., 41 (1945), 365–374.

    Article  Google Scholar 

  24. L.H. Friedman, D.C. Chrzan, Scaling theory of the Hall-Petch relation for multilayers, Phys. Rev. Letters, 81 (1998), 2715–2719.

    Article  Google Scholar 

  25. A. Friedman, J.J.L. Velasquez, A free boundary problem associated with crystallization of polymers in a temperature field, Indiana Univ. Math. Journal, 50 (2001), 1609–1650.

    Article  MATH  Google Scholar 

  26. R. V. Gamkrelidze, Principles of Optimal Control Theory Plenum Press, N. Y., London, 1976.

    Google Scholar 

  27. B.G. Ivanoff, E. Merzbach, A martingale characterization of the set-indexed Poisson Process, Stochastics and Stochastics Report 51 (1994), 69–82.

    MathSciNet  MATH  Google Scholar 

  28. H. Janeschitz-Kriegl, E. Ratajski, H. Wippel, The physics of athermal nuclei in polymer crystallization, Colloid & Polymer Science 277 (1999), 217–226.

    Article  Google Scholar 

  29. W.A. Johnson, R.F. Mehl, Reaction Kinetics in processes of nucleation and growth, Trans. A.I.M.M.E., 135, 416–458 (1939).

    Google Scholar 

  30. J.D. Kalbfleisch, R.L. Prentice, The Statistical Analysis of Failure Time Data, John Wiley and Sons, New York, 1980.

    MATH  Google Scholar 

  31. A.N. Kolmogorov, On the statistical theory of the crystallization of metals, Bull. Acad.Sci USSR, Math. Ser. 1 (1937), 355–359.

    Google Scholar 

  32. D. Kröner, Numerical Schemes for Conservation Laws, Wiley & Teubner, Chichester, Stuttgart, 1997.

    MATH  Google Scholar 

  33. G. Knowles, An Introduction to Applied Optimal Control, Academic Press, New York, 1981.

    MATH  Google Scholar 

  34. G. Last, A. Brandt, Marked Point Processes on the Real Line. A Dynamic Approach, Springer, New York, 1995.

    Google Scholar 

  35. R. Le Veque, Numerical Methods for Conservation Laws, Birkhäuser, Basel, Boston, Berlin, 1990.

    Google Scholar 

  36. G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.

    MATH  Google Scholar 

  37. S. Mazzullo, M. Paolini, C. Verdi, Polymer crystallization and processing: free boundary problems and their numerical approximation, Math. Engineering in Industry 2 (1989), 219–232.

    MATH  Google Scholar 

  38. J.L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates with random nucleation, Philips Res. Rep., 8, 270–290 (1953).

    MATH  Google Scholar 

  39. A. Micheletti, The surface density of a random Johnson-Mehl tessellation, Quaderno n. 17/2001, Dip. di Matematica, Università di Milano, 2001.

    Google Scholar 

  40. A. Micheletti, M. Burger, Stochastic and deterministic simulation of nisothermal crystallization of polymers, J. Math. Chem., 30 (2001), 169–193.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Micheletti, V. Capasso, The stochastic geometry of polymer crystallization processes, Stoch. Anal. Appl. 15 (1997), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Micheletti, V. Capasso, G. Eder The density of the n-facets of an incomplete Johnson-Mehl tessellation. Preprint of the Institute for Industrial Mathematics, Johannes-Kepler University of Linz (Austria), 1997.

    Google Scholar 

  43. J. Moller, Random Johnson-Mehl tessellations, Adv. Appl. Prob., 24, 814–844 (1992).

    Article  Google Scholar 

  44. H. Niessner, Stability of Lax-Wendroff methods extended to deal with source terms, ZAMM 77 (1997), Suppl. 2, S637–S638.

    MATH  Google Scholar 

  45. T. Ohta, Y. Enomoto, R. Kato, Domain growth with time dependent front velocity in one dimension, 1990, preprint.

    Google Scholar 

  46. S. Ohta, T. Ohta, K. Kawasaki, Domain growth in systems with multiple degenerate ground states, Physica, 140A, 478–505 (1987).

    MathSciNet  Google Scholar 

  47. E. Ratajski, H. Janeschitz-Kriegl, How to determine high growth speeds in polymer cryst allization, Colloid Polym. Sci. 274 (1996), 938–951.

    Article  Google Scholar 

  48. M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Springer, New York, 1993.

    MATH  Google Scholar 

  49. S.M. Ross, Simulation. 2nd ed. Academic Press, San Diego, 1997.

    MATH  Google Scholar 

  50. C. Salani, Crystallization of polymers with thermal heterogeneities, ECMI Thesis, Linz (1997).

    Google Scholar 

  51. C. Salani, On the mathematics of polymer crystallization processes: stochastic and deterministic models., Ph.D. Thesis, University of Milano, Italy, 2000.

    Google Scholar 

  52. G.E.W. Schulze, T.R. Naujeck, A growing 2D spherulite and calculus of variations, Colloid & Polymer Science 269 (1991), 689–703.

    Article  Google Scholar 

  53. J.A. Sethian, Level Set Methods. Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Univ. Press, Cambridge, 1996.

    MATH  Google Scholar 

  54. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, Berlin, Heidelberg, 1983.

    Book  MATH  Google Scholar 

  55. D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Application, John Wiley & Sons, New York, 1995.

    Google Scholar 

  56. P. Supaphol, J.E. Spruiell, Thermal properties and isothermal crystallization of syndiodactic polypropylenes: differential scanning calorimetry and overall crystallization kinetics, Journ. Appl. Polym. Sci. 75 (2000), 44–59.

    Article  Google Scholar 

  57. J.E. Taylor, J.W. Cahn, C.A. Handwerker, Geometric models of crystal growth, Acta metall. mater. 40 (1992), 1443–1475.

    Article  Google Scholar 

  58. D.W. Van Krevelen, Properties of Polymers, 5th ed., Elsevier, Amsterdam, 1990.

    Google Scholar 

  59. Y. Zhang, B. Tobarrok, Modifications to the Lax-Wendroff scheme for hyperbolic systems with source terms, Int. J. Numer. Methods Eng. 44 (1999), 27–40.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capasso, V., Burger, M., Micheletti, A., Salani, C. (2003). Mathematical Models for Polymer Crystallization Processes. In: Capasso, V. (eds) Mathematical Modelling for Polymer Processing. Mathematics in Industry, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55771-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55771-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62810-8

  • Online ISBN: 978-3-642-55771-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics