Advertisement

A Reaction-Diffusion System

  • Avner Friedman
  • David S. Ross
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 3)

Abstract

In development the film is immersed in an aqueous solution as shown schematically in Fig. 16.1 which, for simplicity, depicts a three-layer film. The emulsion layers contain silver halide grains and oil droplets. The oil droplets contain chemicals — couplers — that form dye and inhibitor in the course of development.

Keywords

Modulation Transfer Function Silver Halide Knife Edge Pure Silver Edge Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Bahvalov and G. P. Panacenko, Averaging Processes with Periodic Media, Moscow, Nauka, 1984.Google Scholar
  2. 2.
    A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland, Amsterdam (1978).zbMATHGoogle Scholar
  3. 3.
    B. H. Carroll, G. C. Higgins, and T. H. James, Introduction to Photographic Theory, Wiley-Interscience, New York (1980).Google Scholar
  4. 4.
    E. M. Crane, Acutance and granularity, Proceedings SPIE International Soc. Optical Engineering, U.S., 310 (1981), 125–132.Google Scholar
  5. 5.
    A. Friedman, Mathematics in Industrial Problems, Part 2, IMA Volumes in Mathematics and its Applications, #24, Springer-Verlag, New York (1988).Google Scholar
  6. 6.
    T. H. James, The Theory of the Photographic Process, 4th edn., Macmillan, New York (1977), Article by James, 373–403.Google Scholar
  7. 7.
    V. V. Jikov, S.M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin (1994).CrossRefGoogle Scholar
  8. 8.
    J. L. Lions, Asymptotic expansion in perforated media with periodic structure, Rocky Mountain J. Math., 10 (1980), 125–140.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Mateject and R. Meyer, Contribution on the Mechanism of Photographic Development, Photogr. Sci. Eng., 7 (1963), 265–269.Google Scholar
  10. 10.
    C. E. K. Mees (edited by T.H. James), The theory of photographic processes, 3rd edn., Macmillan, New York (1966).Google Scholar
  11. 11.
    K. C. Ng and D. S. Ross, Parameter identification problems in photographic science, Proceedings of the conference “Inverse Problem and Optimal Design in Industry,” eds. H.W. Engl and J. McLaughlin, pp. 67-80, B. G. Teubner, Stuttgard (1994).Google Scholar
  12. 12.
    W. Liu, A parabolic system arising in film development, Nonlinear Analysis, 16 (1991), 263–281.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Avner Friedman
    • 1
  • David S. Ross
    • 2
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Department of Mathematics and StatisticsRochester Institute of TechnologyRochesterUSA

Personalised recommendations