Advertisement

Newtonian Coating Flows

  • Avner Friedman
  • David S. Ross
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 3)

Abstract

Figure 10.1 shows the method of coating a moving substrate by allowing a liquid curtain under the influence of gravity to fall on it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.D. Blake and K.J. Ruschak, Wetting: Static and dynamic contact lines, in liquid film coating: Scientific Principles and their Technological Implications, P.M. Schweizer and S.F. Kistler, eds., Chap. 3, Chapman and Hall, London (1996).Google Scholar
  2. 2.
    E. B. Dussan V., The moving contact line: The slip boundary condition, J. Fluid Mech., 77 (1976), 665-684.zbMATHCrossRefGoogle Scholar
  3. 3.
    E.B. Dussan V., On the spreading of liquids on solid surfaces: static and dynamic contact lines, Ann. Rev. Fluid Mech., 11 (1979), 371-400.CrossRefGoogle Scholar
  4. 4.
    E. B. Dussan  and S. H. Davis, On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech., 65 (1974), 71-95.zbMATHCrossRefGoogle Scholar
  5. 5.
    A. Friedman, Mathematics in Industrial Problems, Part 9, IMA Volumes in Mathematics and its Applications, #88, Springer-Verlag, New York (1997).zbMATHCrossRefGoogle Scholar
  6. 6.
    A. Friedman and J.J.V. Velazquez, The analysis of coating flows near the contact line, J. Diff. Eqs., 119 (1995), 137-208.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Friedman and J. J. V. Velazquez, The analysis of coating flows in a strip, J. Diff. Eqs., 121 (1995), 134-182.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/ liquid/fluid contact line, J. Colloid Interface Sei., 35 (1971), 85-101.CrossRefGoogle Scholar
  9. 9.
    C. Huh and S. G. Mason, The steady movement of a liquid meniscus in a capillary tube, J. Fluid Mech., 81 (1977), 401-419.CrossRefGoogle Scholar
  10. 10.
    S.F. Kistler and L.E. Scriven, Computational analysis of polymer processing, J.R. A. Pearson and S.M. Richardson, eds., Chap. 8, pp. 248-299, Applied Science Publishers, London (1983).Google Scholar
  11. 11.
    S. F. Kistler and L. E. Scriven, Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system, Intern. J. for Numerical Methods in Fluid, 4 (1984), 207-229.zbMATHCrossRefGoogle Scholar
  12. 12.
    C. C. Ngan and E. B. Dussan V., On the dynamics of liquid spreading on solid surfaces, J. Fluid Mech., 209 (1989), 191-226.CrossRefGoogle Scholar
  13. 13.
    K. Pileckas, Noncompact free boundary problems for the Navier-Stokes equations, in “The Navier-Stokes Equations. Theory and Numerical Methods”, J.G. Heywood, K. Masuda, R. Rautmann, and V. A. Solonnikov, eds., Lecture notes in Mathematics, pp. 60-72, Springer-Verlag, 1989.Google Scholar
  14. 14.
    K. Pileckas, On plane motion of viscous incompressible capillary liquid with a noncompact free boundary, Arch. Mech., 41 (1989), 329-342.MathSciNetzbMATHGoogle Scholar
  15. 15.
    K. Pileckas and M. Specovius-Neugebauer, Solvability of a problem with free non compact boundary for a stationary Navier-Stokes system, Lithuanian Math. J., 29 (1989), 281-292.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    V.V. Pukhnachev and V.A. Solonnikov, On the problem of dynamic contact angle, Prikl. Math. Mech., 46 (1982), 961-972 [Transi. J. Appl. Math. Mech., 46 (1982), 771-779].MathSciNetGoogle Scholar
  17. 17.
    Y. D. Shikhmurzaev, The moving contact line of a smooth solid surface, Int. J. Multiphase Flow, 19 (1993), 589-910.zbMATHCrossRefGoogle Scholar
  18. 18.
    Y. D. Shikhmurzaev, A two-layer model and an interface between immiscible fluids, Physica A., 192 (1993), 47-62.CrossRefGoogle Scholar
  19. 19.
    Y. Shnidman, Forced wetting in a driven diffusive lattice-gas model, Preprint.Google Scholar
  20. 20.
    V.A. Solonnikov, Solvability of the problem of plane motion of a heavy viscous incompressible capillary fluid partly filling a vessel, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 203-236.MathSciNetzbMATHGoogle Scholar
  21. 21.
    V.A. Solonnikov, On a problem of a moving contact angle, Technical Report, Universität-Gesamthochshule Paderborn, Germany (1993).Google Scholar
  22. 22.
    V. A. Solonnikov and V. E. Schadilov, On the boundary value problem for a stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov, 125 (1973), 196-210.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Avner Friedman
    • 1
  • David S. Ross
    • 2
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Department of Mathematics and StatisticsRochester Institute of TechnologyRochesterUSA

Personalised recommendations