Measuring Coalescence

  • Avner Friedman
  • David S. Ross
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 3)


Recall that an emulsion layer in photographic film contains silver halide grains and oil droplets in suspension. The oil droplets contain couplers, chemicals that form colored dyes during the development of the film.


Batch Reactor Weber Number Homogenization Process Silver Halide Emulsion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.A. Coulaloglou and L.L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chemical Engineering Science, 32 (1977), 1289–1297.CrossRefGoogle Scholar
  2. 2.
    P. B. Dubovskii, Mathematical Theory of Coagulation, Lecture Notes Series Number 23, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University, Seoul, Korea (1994).zbMATHGoogle Scholar
  3. 3.
    P. B. Dubovskii and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sciences, 19 (1996), 571–591.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P. B. Dubovskii and I.W. Stewart, Trend to equilibrium for the coagulation-fragmentation equation, Math. Methods Appl. Sciences, 19 (1996), 761–772.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Fasano and F. Rossa,A new model for dynamics of dispersions in a batch reactor, in “Lectures on Applied Mathematics,” H-J. Bungartz, R.H.W. Hoppe, and C. Zenger, eds., Springer, Berlin (2000), 123–141.Google Scholar
  6. 6.
    A. Friedman, Mathematics in Industrial Problems, Part 10, IMA Volumes in Mathematics and its Applications, #100, Springer-Verlag, New York (1998).zbMATHCrossRefGoogle Scholar
  7. 7.
    A. Friedman and F. Reitich, Asymptotic behavior of solution of coagulation-fragmentation models, Indiana Univ. Math. J., 47 (1998), 563–591.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc, 85 (1957), 547–560.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    D.K.R. Nambiar, R. Kumar, T. R. Das and K.S. Gandhi, A new model for the breakage frequency of drops in turbulent stirred dispersions, AIChE J., 47, (1984), 2989–3002.Google Scholar
  10. 10.
    G. Narasimhan, G. Nejfelt and D. Ramkrishna, Breakage functions for droplets in agitated liquid-liquid dispersions, AIChE J., 30 (1984), 457–467CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Avner Friedman
    • 1
  • David S. Ross
    • 2
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Department of Mathematics and StatisticsRochester Institute of TechnologyRochesterUSA

Personalised recommendations