Skip to main content

Numerical Simulation of Exhaust Systems in Car Industry — Efficient Calculation of Radiation Heat Transfer

  • Chapter
  • 904 Accesses

Abstract

The aim of this project is a complete yet simple numerical model for the heat transfer in a system of exhaust pipes of an automobile. The industrial partner Tenneco Automotive, H. Gillet GmbH at Edenkoben, uses this simulation for optimising the construction of the exhaust system in order to improve the efficiency of the catalytic converters. In this model forced convection of the exhaust gas, the heat conduction and the heat transfer due to radiation are taken into account. For the effective numerical solution of the boundary integral equation for the radiation heat transfer a method that is based on matrix compression is developed. Some numerical examples for the matrix compression and calculations using a developed software package are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nording. Neuartiges Konzept für Abgaskrümmer, Vorrohre und Katalysatoren. Motortechnische Zeitschrift, 52: 206–210, 1991.

    Google Scholar 

  2. W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices. Computing, 62(2): 89–108, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Hackbusch and B. N. Khoromskij. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems. Technical report, Max-Planck-Institut, Leipzig, 1999.

    Google Scholar 

  4. W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54(4): 463–491, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Rjasanow. Effective Algorithms with Block Circulant Matrices. Linear Algebra Appl., 202: 55–69, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Rjasanow. Heat Transfer in an Insulated Exhaust Pipe. Journal Eng. Math., 29: 33–49, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Rjasanow. Optimal preconditioner for boundary element formulation of the Dirichlet problem in elasticity. Math. Methods in Appl. Sciences, 18: 603–613, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Rjasanow. The Structure of the Boundary Element Matrix for the Three-dimensional Dirichlet Problem in Elasticity. Num. Linear Algebra Appl., 5(3): 203–217, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bebendorf. Low-rank approximation of boundary element matrices. to appear in Numerische Mathematik.

    Google Scholar 

  10. Bebendorf M., Rjasanow S. Matrix compression for the radiation heat transfer in exhaust pipes. to appear in Multifield Problems in Solid and Fluid Mechanics, Springer, Berlin

    Google Scholar 

  11. A. Brandt. Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Comm., 65: 24–38, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rokhlin, V. Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60: 187–207, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  13. Greengard, L. and Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys., 73: 325–348, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  14. Greengard, L. and Rokhlin, V. A new version of the fast multipole method for the Laplace equation in three dimensions. Acta numerica, Cambridge: 229-269, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rjasanow, S., Bebendorf, M. (2003). Numerical Simulation of Exhaust Systems in Car Industry — Efficient Calculation of Radiation Heat Transfer. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics