Skip to main content

Spatio-Temporal Current Density Reconstruction from EEG-/MEG-Data

  • Chapter
Mathematics — Key Technology for the Future

Abstract

The determination of the sources of electric activity inside the brain from electric measurements on the surface of the head is known to be an ill-posed problem. In this paper a new algorithm which takes temporal a-priori information into account is described and compared to existing algorithms as Tikhonov-Phillips. There are further applications in medical and technical fields as the determination of electrical sources in the living heart and the determination of acoustic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.D. Waberski, H. Buchner, G. Herrendorf, R. Gobbele and W. Paulus, “Properties of inverse methods in temporal lobe epilepsie”, Epilepsia, in press, 2000.

    Google Scholar 

  2. G. Herrendorf, B.J. Steinhoff, R. Kolle, J. Baudewig, T.D. Waberski, H. Büchner and W. Paulus, “Dipole source analysis in a realistic head model in patients with focal epilepsy”, Epilepsia, no. 41, pp. 71–80, 2000.

    Google Scholar 

  3. H. Büchner, T.D. Waberski and J. Noth, “Generators of early cortical somatosensory evoked potentials in men”, in Recent Advances in Clinical Neurophysiology, Kimura and Shibasaki, Eds. 1996, pp. 630–636, Elsevier Amsterdam.

    Google Scholar 

  4. H. Büchner, F. Darvas, Friedrich, M. Fuchs, A. Knepper, G. Knoll, D. Meyer-Ebrecht, A. Rienäcker, Sloot and Wamuth, “Localization of the electromagnetic activity of the brain in its individual anatomy”, in Future Generation Computer Systems, 2000.

    Google Scholar 

  5. R.M. Gulrajani, Roberge and Savard, “The inverse problem of electrocardiography”, in Comprehensive Electrocardiology, Macfarlane and Veitch Lawrie, Eds. 1989, pp. 237–288, Pergamon.

    Google Scholar 

  6. C. Wolters, R. Beckmann, A. Rienäcker and H. Büchner, “Comparing regularized and non-regularized nonlinear dipole fit methods: A study in a simulated sulcus structure”, Brain Topography, no. 1 vol 12, pp. 3–18, 1999.

    Article  Google Scholar 

  7. M. Fuchs, M. Wagner, H.-A. Wischmann, T. Köhler, A. Theißen, R. Drenckhahn and H. Büchner, “Improving source reconstructions by combining bioelectric and biomagnetic data”, Clin. Neurophysiol., no. 107, pp. 93–111, 1998.

    Article  Google Scholar 

  8. J.-Z. Wang, S.J. Williamson and L. Kaufmann, “Magnetic source imaging based on the minimum-norm least-squares inverse”, Brain Topography, no. 5, pp. 365–371, 1993.

    Article  Google Scholar 

  9. M.S. Hämäläinen and R.J. Ilmoniemi, “Interpreting magnetic fields of the brain: minimum norm estimates.”, Med Biol Eng Comput, no. 32, pp. 35–42, 1994.

    Article  Google Scholar 

  10. M. Fuchs, M. Wagner, T. Köhler and H.-A. Wischmann, “Linear and nonlinear current density reconstructions”, Clin. Neurophysiol, no. 3, vol. 16, pp. 267–295, 1999.

    Article  Google Scholar 

  11. W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, Teubner, Stuttgart, 1986.

    MATH  Google Scholar 

  12. H. Buchner, G. Knoll, M. Fuchs, A. Rieäecker, R. Beckmann, M. Wagner, J. Silny and J. Pesch, “Inverse localization of electric dipole current sources in finite element models of the human head”, Electroencephalography & Clinical Neurophysiology, no. 102, pp. 267–278, 1997.

    Article  Google Scholar 

  13. M. Fuchs, R. Drenckhahn, H.-A. Wischmann and M. Wagner, “An improved boundary element method for realistic volume-conductor modelling”, IEEE Trans Biomed Eng, no. 45, pp. 980–997, 1998.

    Article  Google Scholar 

  14. R. Srebro, “Continuous current source inversion of evoked potential fields in a spherical model head”, IEEE Trans Biomed Eng, no. 42, pp. 997–1003, 1994.

    Article  Google Scholar 

  15. A.K. Louis, “Parametric reconstruction in biomagnetic imaging”, in Inverse Problems in Scattering and Imaging, 1992.

    Google Scholar 

  16. A.K. Louis, Inverse und schlecht gestellte Probleme, Teubner, Stuttgart, 1989.

    Book  MATH  Google Scholar 

  17. H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996.

    Google Scholar 

  18. R.D. Pascual-Marqui, “Low resolution electromagnetic tomography: A new method for localizing electrical activity in brain”, International Journal of Psychophysiology, pp. 49–65, 1994.

    Google Scholar 

  19. M. Wagner, Rekonstruktion neuronaler Stroeme aus bioelektrischen Messungen auf der aus MR-Bildern segmentierten Hirnrinde, Shaker, 1998.

    Google Scholar 

  20. P.C. Hansen, “Regularization tools”, Numerical Algorithms, no. 6, pp. 1–35, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. U. Schmitt, A.K. Louis, F. Darvas, H. Buchner, M. Fuchs, “Numerical Aspects of Spatio-Temporal Current Density Reconstruction”, IEEE Medical Imaging, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Louis, A.K., Schmitt, U., Darvas, F., Büchner, H., Fuchs, M. (2003). Spatio-Temporal Current Density Reconstruction from EEG-/MEG-Data. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics