Skip to main content

Modelling and Simulation of Strained Quantum Wells in Semiconductor Lasers

  • Chapter
Mathematics — Key Technology for the Future

Abstract

A model allowing for efficiently obtaining band structure information on semiconductor Quantum Well structures will be demonstrated which is based on matrix-valued kp-Schrödinger operators. Effects such as confinement, band mixing, spin-orbit interaction and strain can be treated consistently. The impact of prominent Coulomb effects can be calculated by including the Hartree interaction via the Poisson equation and the bandgap renormalization via exchange-correlation potentials, resulting in generalized (matrix-valued) Schrödinger-Poisson systems. Band structure information enters via densities and the optical response function into comprehensive simulations of Multi Quantum Well lasers. These device simulations yield valuable information on device characteristics, including effects of carrier transport, waveguiding and heating and can be used for optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Koprucki and U. Bandelow. KPLIB: An open tool box for the numerical treatment of k · p Schrödinger operators. Report, Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany, in preparation.

    Google Scholar 

  2. S. L. Chuang. Physics of optoelectronic Devices. Wiley & Sons, New York, 1995.

    Google Scholar 

  3. U. Bandelow, H.-Chr. Kaiser, T. Koprucki, and J. Rehberg. Spectral properties of k · p Schrödinger operators in one space dimension, submitted to Numerical Functional Analysis and Optimization.

    Google Scholar 

  4. B. A. Foreman. Elimination of spurious solutions from eight-band k·p theory. Physical Review B, 56:R12748–R12751, 1997.

    Article  Google Scholar 

  5. H. Wenzel, G. Erbert, and P. M. Enders. Improved theory of the refractive-index change in quanturn-well lasers. IEEE Journal of Selected Topics in Quantum Electronics, 5(3):637–642, 1999.

    Article  Google Scholar 

  6. P.M. Enders. Enhancement and spectral shift of optical gain in semiconductors from non-markovian intraband relaxation. IEEE Journal of Quantum Electronics, 33(4):580–588, 1997.

    Article  Google Scholar 

  7. Weng W. Chow, Stephan W. Koch, and Murray Sargent III. Semiconductor-Laser Physics. Springer-Verlag, Berlin, 1994.

    Book  Google Scholar 

  8. R. M. Dreizler and E. K. U. Gross. Density Functional Theory. Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  9. H.-Chr. Kaiser and J. Rehberg. About a one-dimensional stationary Schrödinger-Poisson system with Kohn-Sham potential. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 50:423–458, 1999.

    MathSciNet  MATH  Google Scholar 

  10. H.-Chr. Kaiser and J. Rehberg. About a stationary Schrödinger-Poisson system with Kohn-Sham potential in a bounded two-or three-dimensional domain. Nonlinear Analysis, 41(1-2):33–72, May 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Zimmermann. Many-Particle Theory of Highly Exited Semiconductors, volume 18 of Teubner-Texte zur Physik. BSB Teubner, Leipzig, 1988.

    Google Scholar 

  12. H. Gajewski et al. TESCA TWO-and three-dimensional Semiconductor Analysis package. Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany.

    Google Scholar 

  13. H. J. Wünsche, U. Bandelow, and H. Wenzel. Calculation of combined lateral and longitudinal spatial hole burning in λ/4 shifted DFB lasers. IEEE Journ. of Quant. electron., 29(6):1751–1761, 1993.

    Article  Google Scholar 

  14. U. Bandelow, H. Gajewski, and H.-Chr. Kaiser. Modelling combined effects of carrier injection, photon dynamics and heating in Strained Multi-Quantum Well Lasers. to appear in SPIE Proc. of Physics and Simulation of Optoelectronic Devices VIII, 2000.

    Google Scholar 

  15. G. Albinus, H. Gajewski, and R. Hünlich. Thermodynamic design of energy models of semiconductor devices. Preprint 573, Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, D-10117 Berlin, Germany, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaiser, HC., Bandelow, U., Koprucki, T., Rehberg, J. (2003). Modelling and Simulation of Strained Quantum Wells in Semiconductor Lasers. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics