Skip to main content

Direct and Inverse Problems for Diffractive Structures — Optimization of Binary Gratings

  • Chapter
Mathematics — Key Technology for the Future

Abstract

The goal of the project is to provide flexible analytical and numerical tools for the optimal design of binary and multilevel gratings occurring in many applications in micro-optics. The direct modelling of these diffractive elements has to rely on rigorous grating theory, which is based on Maxwell’s equations. We developed efficient and accurate direct solvers using a variational approach together with a generalized finite element method which appears to be well adapted to rather general diffractive structures as well as complex materials. The optimal design problem is solved by minimization algorithms based on gradient descent and the exact calculation of gradients with respect to the geometry parameters of the grating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuska, F. Ihlenburg, E. Paik, S. Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comp. Meth. Appl. Mech. Eng., 128, 325–359 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bao, D.C. Dobson, J.A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Amer., A 12, 1029–1042 (1995).

    Article  MathSciNet  Google Scholar 

  3. J. Elschner, G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. Part I: Direct problems and gradient formulas, Math. Meth. Appl. Sci., 21, 1297–1342 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Elschner, G. Schmidt, Numerical solution of optimal design problems for binary gratings, J. Comp. Physics, 146, 603–626 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Elschner, G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. Part II: Gradient formulas for TM polarization, Weierstrass Institute, Berlin, Preprint No. 538 (1999).

    Google Scholar 

  6. J. Elschner, G. Schmidt, Conical diffraction by periodic structures: Variation of interfaces (submitted).

    Google Scholar 

  7. J. Elschner, R. Hinder, F. Penzel, G. Schmidt, Existence, uniqueness and regularity for solutions of the conical diffraction problem, M3AS (to appear).

    Google Scholar 

  8. R. Petit (ed.), Electromagnetic Theory of Gratings, Springer Verlag, Berlin, Topics in Current Physics, Vol. 22 (1980).

    Google Scholar 

  9. H.-J. Rostalski, J. Guhr, B. Kleemann, J. Elschner, G. Schmidt, M. Ferstl, E. Pawlowski, R. Steingrüber, G. Bostanjoglo, R. Motzkus, Use of a multilayer dielectric diffraction grating as the resonator mirror of a neodymium-doped yttrium aluminium garnet laser, J. Mod. Opt., 45, 1523–1535 (1998).

    Article  Google Scholar 

  10. J. Turunen, F. Wyrowski (eds.), Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elschner, J., Hinder, R., Schmidt, G. (2003). Direct and Inverse Problems for Diffractive Structures — Optimization of Binary Gratings. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics