Skip to main content

Adaptive Multigrid Methods for the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design

  • Chapter
Mathematics — Key Technology for the Future

Abstract

This paper has been motivated by the need for a fast robust adaptive multigrid method to solve the vectorial Maxwell eigenvalue problem arising from the design of optical chips. Our nonlinear multigrid methods are based on a previous method for the scalar Helmholtz equation, which must be modified to cope with the null space of the Maxwell operator due to the divergence condition. We present two different approaches. First, we present a multigrid algorithm based on an edge element discretization of time-harmonic Maxwell’s equations, including the divergence condition. Second, an explicit elimination of longitudinal magnetic components leads to a nodal discretization known to avoid discrete spurious modes also and a vectorial eigenvalue problem, for which we present a multigrid solver. Numerical examples show that the edge element discretization clearly outperforms the nodal element approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., and Wohlmuth, B.: Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell’s Equations. Surv. Math. Ind. 9 (1999) 271–312

    MathSciNet  Google Scholar 

  2. Börm, S.: Mehrgitterverfahren für die Simulation zylindersymmetrischer elektromagnetischer Felder. Dissertation, Chistian-Albrechts-Universität Kiel, (2000)

    Google Scholar 

  3. Boffi, D., Fernandes, P., Gastaldi, L. and Perugia, I.: Computational models of electromagnetic resonators: Analysis of edge element approximations. SIAM J. Numer. Anal. 36, (1999) 1264–1290

    Article  MathSciNet  MATH  Google Scholar 

  4. Bossavit, A.: Edge-Elements for Scattering Problems. IEEE Transaction on Magnetics 25 (1989) 2816–2821

    Article  Google Scholar 

  5. Bramble, J. H., Knyazev, A.V. and Pasciak J. E.: A Subspace preconditioning algorithm for eigenvector/eigenvalue computation. Advances in Comp. Math. 6 (1996) 159–189

    Article  MathSciNet  Google Scholar 

  6. Chai, Z., Mandel, J. and McCormick. S. F.: Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34 (1997) 178–200

    Article  MathSciNet  Google Scholar 

  7. Deuflhard, P., Friese, T., Schmidt F., März R., and Nolting, H.-P.: Effiziente Eigenmodenberechnung für den Entwurf integriert-optischer Chips. In K.-H. Hoffmann, W. Jäger, Th. Lohmann, and H. Schunck, editors, Mathematik-Schlüsseltechnologie für die Zukunft, Springer Verlag (1996) 267–279

    Google Scholar 

  8. Deuflhard, P.: Differential Equations in Technology and Medicine. Computational Concepts, Adaptive Algorithms, and Virtual Labs. Computational Mathematics Driven by Industrial Applications. Lecture Notes in Mathematics vol. 1739, Springer-Verlag (2000) 69–125

    Article  MathSciNet  Google Scholar 

  9. Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer-Verlag, to be published (2001)

    Google Scholar 

  10. Dillon, B.M. and Webb, J. P.: A Comparison of Formulations for the Vector Finite Element Analysis of Waveguides. IEEE Transactions on Microwave Theory and Techniques 42 (1994) 308–316

    Article  Google Scholar 

  11. Döhler, B.: Ein neues Gradientenverfahren zur simultanen Berechnung der kleinsten und grössten Eigenwerte des allgemeinen Eigenwertproblems. Numer. Math. 40 (1982) 79–91

    Article  MathSciNet  MATH  Google Scholar 

  12. Friese, T.: Eine nichtlineare Mehrgitter-Methode für das Eigenwertproblem linearer, nicht-selbstadjungierter Operatoren. Dissertation, FU Berlin, Fachbereich Mathematik und Informatik, 1997.

    Google Scholar 

  13. Friese, T., Deuflhard, P. and Schmidt, F. A Multigrid Method for the Complex Helmholtz Eigenvalue Problem. In C.-H. Lai, P. E. Bjørstad, M. Cross and O. B. Widlund, editors, Domain Decomposition Methods in Sciences and Engineering (DD11), pp. 18–26, DDM.org, 1999.

    Google Scholar 

  14. Hackbusch, W.: Multi-Grid Methods and Applications. Springer-Ver lag, New York, 1985.

    MATH  Google Scholar 

  15. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36 (1998) 204–225

    Article  MathSciNet  MATH  Google Scholar 

  16. Nédélec, J. C.: Mixed Finite Elements in R 3. Numer. Math. 35 (1980) 315–341

    Article  MathSciNet  MATH  Google Scholar 

  17. März, R.: Integrated Optics. Design and Modelling. Artech House, Boston, London, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deuflhard, P., Schmidt, F., Friese, T., Zschiedrich, L. (2003). Adaptive Multigrid Methods for the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics