Skip to main content

Numerical Optimization of Scavenging in Two-Stroke Engines with Transfer Ducts, an Exhaust Port and a Moving Piston

  • Chapter
Mathematics — Key Technology for the Future
  • 902 Accesses

Abstract

For the benefit of the environment, the HC-emission of two-stroke engines has to be reduced. This can be done by reducing the losses of scavenging by improving the geometry of the transfer ducts and the exhaust port. Numerical simulations of the flow through the two-stroke engine should be performed for different geometries in order to reveal the geometry with an optimal scavenge process. The simulations can help to accelerate the development of new two-stroke engines. The underlying mathematical model consists of the compressible Navier-Stokes equations in the cylinder with a moving piston. For the discretization we use a stabilized finite volume scheme on a hexahedral mesh. Up to now we have developed a numerical code for computing the flow in the cylinder and the most important integral quantities such as trapping efficiency and the percentage of exhaust gas at the exhaust port. Now we are able to analyze quantitatively the scavenge process and to estimate the quality of different drafts for the geometrical design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.P. Blair, Design and simulation of two-stroke engines, Warrendale, PA: Soc. of Automotive Engineers 623 p. (1996).

    Google Scholar 

  2. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, Godunov-Type Schemes for the MED Equations, submitted for conference proceedings, Universität Freiburg (1999).

    Google Scholar 

  3. A. Dedner, C. Rohde and M. Wesenberg, A MED-Simulation in Solar Physics, in R. Vilsmeier, F. Benkhaldoun, D. Hänel (Eds), Finite Volumes for Complex Applications II: Problems and Perspectives, Hermès Science Publ., Paris, pp. 491–498 (1999).

    Google Scholar 

  4. L.J. Durlofsky, B. Engquist and S. Osher, Triangle based adaptive stencils for the solution of hyperbolic conservation laws, J. Comp. Phys. 98, pp. 64–73 (1992).

    Article  MATH  Google Scholar 

  5. A. Dedner, C. Rohde, B. Schupp and M. Wesenberg, A parallel, load balanced MED Code on locally adapted, unstructured grids in 3D, in preparation.

    Google Scholar 

  6. A. Egelja, D. Kröner, R. Schwörer, N. Lanson, M. Mancip and J.P. Vila, Combined finite volume and smoothed particle method, CNRS-DFG Collaborative Research Programme, Results 1996-1998, E. H. Hirschel (ed.), Vieweg, 50–74 (1999).

    Google Scholar 

  7. B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comput. 36 pp. 321–351 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Geßner, Adaptive explizite und implizite numerische Simulation reaktiver Strömungen, Dissertation, Freiburg University, in preparation.

    Google Scholar 

  9. GRAPE. GRAphics Programming Environment: Reference Manual, http://www.mathematik.uni-freiburg.de/Grape/DOC/HTML/manual.html, Institut für Angewandte Mathematik, Universität Freiburg (1996).

  10. R. T. Happe and M. Rumpf, Characterizing global features of simulation data by selected local icons, In Virtual Environments and Scientific Visualization ′96, (1996).

    Google Scholar 

  11. ICEM CFD Hexa, ICEM CFD Engineering, (1999).

    Google Scholar 

  12. L. Klassen and D. Kröner, Discretization of higher order for conservation laws on nonconformal unstructured rectangular grids, in preparation (2000).

    Google Scholar 

  13. D. Kröner, Numerical schemes for conservation laws, Wiley und Teubner, 508 p. (1996).

    Google Scholar 

  14. D. Kröner und M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions Math. Comput. 69, No. 229, 25–39 (2000).

    MATH  Google Scholar 

  15. D. Kröner, M. Ohlberger and Ch. Rohde (Eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Proc. of the international school, Freiburg, Littenweiler, Germany, Okt. 1997, Lecture Notes in Computational Science and Engineering, Vol. 5, Springer (1998).

    Google Scholar 

  16. D. Kröner and M. Rokyta, Higher order error estimates for time-dependent convection dominated diffusion equations in 2-D, Manuscript, Freiburg University (1999).

    Google Scholar 

  17. L. D. Landau and E. M. Lifschitz, Theoretical Physics, Vol. VI (1995).

    Google Scholar 

  18. M. Ohlberger, Adaptive mesh refinement for single and two phase flow problems in porous media, In Proc. of the 2nd International Symposium on: Finite volumes for complex applications — problems and perspectives, Duisburg, 1999, pp. 761–768, Hermes Science Publications, Paris (1999).

    Google Scholar 

  19. M. Ohlberger, A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations, Preprint 03-99, Freiburg (1999), accepted for publication in Num. Math. (2000).

    Google Scholar 

  20. M. Ohlberger, A posteriori error estimates for cell centered finite volume approximations of convection-diffusion-reaction equations, in preparation.

    Google Scholar 

  21. L. I. Sedov, A course in continuum mechanics, Vol. 2, Wolters-Noordhoff Publ. (1972).

    Google Scholar 

  22. B. Schupp, Entwicklung eines effizienten Verfahrens zur Simulation kompressibler Strömungen in 3D auf Parallelrechnern, Dissertation, Universität Freiburg (2000).

    Google Scholar 

  23. M. Wierse, Higher Order Upwind Schemes on Unstructured Grids for the Compressible Euler Equations in Timedependent Geometries in 3D, Dissertation, Universität Freiburg (1994).

    Google Scholar 

  24. M. Wierse and D. Kröner, Higher order upwind schemes on unstructured grids for the nonstationary compressible Navier-Stokes equations in complex timedependent geometries in 3D, Preprint No. 2, Freiburg University (1996).

    Google Scholar 

  25. M. Wierse, D. Kröner, A. Müller, B. Schupp and R. Schwörer Simulation of a 3-D piston driven flow, R. Friedrich (ed.) et al., Computation and visualization of three-dimensional vortical and turbulent flows. Proc. of the 5th CNRS-DFG workschop on Numerical flow simulation, München, Germany, Dec. 6-7, 1996. Wiesbaden: Vieweg. Notes Numer. Fluid Mech. 64, 333-349 (1998).

    Google Scholar 

  26. M. Wierse and M. Rumpf, GRAPE, Eine interaktive Umgebung für Visualisierung und Numerik, In Informatik, Forschung und Entwicklung, Vol. 7, pp. 145–151 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kröner, D., Klassen, L., Klimmek, A., Trescher, D. (2003). Numerical Optimization of Scavenging in Two-Stroke Engines with Transfer Ducts, an Exhaust Port and a Moving Piston. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics