Skip to main content

Synthesis of Automotive Cams Using Multiple Shooting-SQP Methods for Constrained Optimization

  • Chapter
Mathematics — Key Technology for the Future

Abstract

Cam design is an old field of mechanical engineering. Because of the complexity of the problem, design procedures have emphasized the use of standardized approaches and rules-of-thumb, which produce reasonable designs without attempting to obtain a truly optimized performance. Increased competition among manufacturers puts pressure on designers to find new ways to deal with the complexity of the problem In recent years progress in the mathematics of numerical solution of optimal control problems has made it possible to obtain numerical solutions for these problems using realistic models and the needed highly nonlinear state inequality constraints. The work reported here develops a high level user interface for cam system designers as well as researchers in the field. It makes available sophisticated numerical integration that handles the necessary discontinuities, and numerical optimization with SQP methods to handle the complex optimization criteria and side conditions. This forms a tool for interactively designing cam systems to create optimal trade offs between the multiple performance characteristics of importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambardekar, M.N., and Gupta, K. N.: Stochastic Optimal Control of Vibrations of High-Speed Cam-Driven Mechanisms, Mechanism and Machine Theory, Vol. 25 (1990), pp. 59–68.

    Article  Google Scholar 

  2. Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, PhD thesis, University of Bonn (1987).

    Google Scholar 

  3. Chew, M., Freudenstein, F., and Longman, R. W.: Application of Optimal Control Theory to the Synthesis of High-Speed Cam-Follower Systems. Part 1: Optimality Criteria. Part 2: System Optimization, ASME Transactions, Journal of Mechanisms, Transmissions and Automation in Design, Vol. 105, (1983), pp. 576–584.

    Article  Google Scholar 

  4. Chew, M, and Chuang, C. H.: Minimizing Residual Vibrations in High-Speed Cam-Follower Systems over a Range of Speeds, ASME Transactions, Journal of Mechanical Design, Vol. 117, (1995), pp. 166–172.

    Article  Google Scholar 

  5. Fabien, B. C., Longman, R.W., and Freudenstein, F.: The Design of High-Speed Dwell-Rise-Dwell Cams Using Linear Quadratic Optimal Control Theory, ASME Transactions, Journal of Mechanical Design, Vol. 116, No. 3 (1994), pp. 867–874.

    Article  Google Scholar 

  6. Freudenstein, F.: On the Dynamics of High-Speed Cam Profiles, International Journal of Mechanical Sciences, Vol. 1 (1960), p. 342–349.

    Article  Google Scholar 

  7. Freudenstein, F., Mayourian, M., and Maki, E. R.: Energy Efficient Cam Follower Systems, ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, (1983), pp. 681–685.

    Article  Google Scholar 

  8. Kanzaki, K., and Itao, K.: Polydyne Cam Mechanisms for Typehead Positioning, ASME Transactions, Journal of Engineering for Industry, Vol. 94 (1972), pp. 250–254.

    Article  Google Scholar 

  9. Kwaknaak, H., and Smit, J.: Minimum Vibration Cam Profiles, Journal of Mechanical Engineering Science, Vol. 10, No. 3 (1968) pp. 219–227.

    Article  Google Scholar 

  10. Leineweber, D.: Efficient Reduced SQP Methods for the Optimization of Chemical Processes Described by Large Sparse DAE Models, PhD thesis, IWR, University of Heidelberg (1999).

    Google Scholar 

  11. Mews, H. et. al.: Dynamische Simulation von Ventiltrieben mit hydraulischem Spielausgleich, MTZ, Volume Nr.3, Franckh-Kosmos Verlags-GmbH (1994).

    Google Scholar 

  12. Pisano, A.P., and Freudenstein, F.: An Experimental and Analytical Investigation of the Dynamic Response of a High-Speed Cam Follower System. Part 1: Experimental Investigation. Part 2: A Combined Lumped/Distributed Parameter Dynamic Model, ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105 (1983), pp. 692–704.

    Article  Google Scholar 

  13. von Schwerin, R.: Numerical Methods, Algorithms and Software for Higher Index Nonlinear Differential-Algebraic Equations in MultiBody System SIM-ulation, PhD thesis, IWR, University of Heidelberg (1997).

    Google Scholar 

  14. Stoddart, D. A.: Polydyne Cam Design, Machine Design, Vol. 25 (1955).

    Google Scholar 

  15. Sun, J.-G., Longman, R.W., and Freudenstein, F.: Determination of Appropriate Cost Functional for Cam-Follower Design using Optimal Control Theory, Proceedings of the 1984 American Control Conference, San Diego, CA, June 1984, pp. 1799–1800.

    Google Scholar 

  16. Wiederrich, J.L., and Roth, B.: Dynamic Synthesis of Cams Using Finite Trigonometric Series, ASME Transactions, Journal of Engineering for Industry, Vol. 97 (1975), pp. 287–293.

    Article  Google Scholar 

  17. Winckler, M.J.: Semiautomatic Discontinuity Treatment in FORTRAN77-coded ODE Models in Proceedings of the 15th IMACS World Congress 1997 on Scientific Computation, Modelling and Applied Mathematics (1997).

    Google Scholar 

  18. Winckler, M.J.: Simulation, Visualisierung und Optimierung unstetiger dynamischer Systeme, PhD Thesis, Cuvillier Verlag, Göttingen (2001).

    Google Scholar 

  19. Yamada, I., and Nakagawa, M.: Reduction of Residual Vibrations in Positioning Control Mechanisms, ASME Transactions, Journal of Vibrations, Acoustics, Stress and Reliability, Vol. 107 (1985), pp. 47–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bock, H.G., Longman, R.W., Schlöder, J.P., Winckler, M.J. (2003). Synthesis of Automotive Cams Using Multiple Shooting-SQP Methods for Constrained Optimization. In: Jäger, W., Krebs, HJ. (eds) Mathematics — Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55753-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55753-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62914-3

  • Online ISBN: 978-3-642-55753-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics