Skip to main content

Selective Gene Regulation by SWI/SNF-Related Chromatin Remodeling Factors

  • Chapter
Protein Complexes that Modify Chromatin

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

Chromatin is a highly dynamic structure that plays a key role in the orchestration of gene expression patterns during cellular differentiation and development. The packaging of DNA into chromatin generates a barrier to the transcription machinery. The two main strategies by which cells alleviate chromatin-mediated repression are through the action of ATP-dependent chromatin remodeling complexes and enzymes that covalently modify the histones. Various signaling pathways impinge upon the targeting and activity of these enzymes, thereby controlling gene expression in response to physiological and developmental cues. Chromatin structure also underlies many so-called epigenetic phenomena, leading to the mitotically stable propagation of differential expression of genetic information. Here, we will focus on the role of SWI/SN-Frelated ATP-dependent chromatin remodeling complexes in developmental gene regulation. First, we compare different models for how remodelers can act in a gene-selective manner, and either cooperate or antagonize other chromatin-modulating systems in the cell. Next, we discuss their functioning during the control of developmental gene expression programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalfs JD, Narlikar GJ, Kingston RE (2001) Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J Biol Chem 276:34270–34278

    PubMed  CAS  Google Scholar 

  • Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFNbeta promoter. Cell 103:667–678

    PubMed  CAS  Google Scholar 

  • Armstrong JA, Bieker JJ, Emerson BM (1998) A SWIISNF-related chromatin remodeling complex, E-RCl, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95:93–104

    PubMed  CAS  Google Scholar 

  • Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-l interacts with beta-catenin to promote target gene activation. EMBO J 20:4935–4943

    PubMed  CAS  Google Scholar 

  • Beato M, Eisfeld K (1997) Transcription factor access to chromatin. Nucleic Acids Res 25:3559–3563

    PubMed  CAS  Google Scholar 

  • Berger SL (2001) An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene 20:3007–3013

    PubMed  CAS  Google Scholar 

  • Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103: 311–320

    PubMed  CAS  Google Scholar 

  • Biggin MD, Tjlan R (1988) Transcription factors that activate the UItrabithorax promoter in developmentally staged extracts. Cell 53:699–711

    PubMed  CAS  Google Scholar 

  • Boyer LA, Logie C, Bonte E, Becker PB, Wade PA, Wolffe AP, Wu C, Imbalzano AN, Peterson CL (2000) Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J Biol Chem 275:18864–18870

    PubMed  CAS  Google Scholar 

  • Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412:651–655

    PubMed  CAS  Google Scholar 

  • Brizuela BJ, Elfring L, Ballard J, Tamkun JW, Kennison JA (1994) Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics 137:803–813

    PubMed  CAS  Google Scholar 

  • Brizuela BJ, Kennison JA (1997) The Drosophila homeotic gene moira regulates expression of engrailed and HOM genes in imaginal tissues. Mech Dev 65:209–220

    PubMed  CAS  Google Scholar 

  • Brock HW, Van Lohuizen M (2001) The Polycomb group-no longer an exclusive club? Curr Opin Genet Dev 11:175–181

    PubMed  CAS  Google Scholar 

  • Brown CE, Lechner T, Howe L, Workman JL (2000) The many HATsof transcription coactivators. Trends Biochem Sci 25:15–19

    PubMed  CAS  Google Scholar 

  • Brown RC, Pattison S, Van Ree J, Coghill E, Perkins A, Jane SM, Cunningham JM (2002) Distinct domains of erythroid Kruppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 22:161–170

    PubMed  CAS  Google Scholar 

  • Bultman S, Gebuhr T, Yee O, Lamantia C, Nicholson J, Gilliam A, Randazzo F, Metzger O, Chambon P, Crabtree G, Magnuson T (2000) A Brgl null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6:1287–1295

    PubMed  CAS  Google Scholar 

  • Burns LG, Peterson CL (1997) Protein complexes for remodeling chromatin. Biochim Biophys Acta 1350:159–168

    PubMed  CAS  Google Scholar 

  • Cairns BR (1998) Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem Sci 23:20–25

    PubMed  CAS  Google Scholar 

  • Cirillo LA, Zaret KS (1999) An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell 4:961–969

    PubMed  CAS  Google Scholar 

  • Collins RT, Furukawa T, Tanese N, Treisman IE (1999) Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J 18:7029–7040

    PubMed  CAS  Google Scholar 

  • Collins RT, Treisman IE (2000) Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes. Genes Dev 14:3140–3152

    PubMed  CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter. Cell 97:299–311

    PubMed  CAS  Google Scholar 

  • Cote J, Quinn J, Workman IL, Peterson CL (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60

    PubMed  CAS  Google Scholar 

  • Crosby MA, Miller C, Alon T, Watson KL, Verrijzer CP, Goldman-Levi R, Zak NB (1999) The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol 19:1159–1170

    PubMed  CAS  Google Scholar 

  • Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991) Sequencespecific antirepression of histone H1-mediated inhibition of basal RNApolymerase II transcription. Science 251:643–649

    PubMed  CAS  Google Scholar 

  • De La Serna I, Roy K, Carlson KA, Imbalzano AN (2001) MyoD Can Induce Cell Cycle Arrest but Not Muscle Differentiation in the Presence of Dominant Negative SWI/SNF Chromatin Remodeling Enzymes. J Biol Chem 276:41486–41491

    PubMed  CAS  Google Scholar 

  • De La Serna I, Imbalzano AN (2001) Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27:187–190

    PubMed  CAS  Google Scholar 

  • Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, Tsukiyama T, Wu C, Pimpinelli S, Tamkun JW (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5:355–365

    PubMed  CAS  Google Scholar 

  • Dilworth FJ, Fromental-Ramain C, Yamamoto K, Chambon P (2000) ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro. Mol Cell 6:1049–1058

    PubMed  CAS  Google Scholar 

  • Elfring LK, Deuring R, Mccallum CM, Peterson CL, TAMKUN JW (1994) Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 14:2225–2234

    PubMed  CAS  Google Scholar 

  • Elfring LK, Daniel C, Papoulas O, Deuring R, Sarte M, Moseley S, Beek SI, Waldrip WR, Daubresse G, Depace A, Kennison JA, Tamkun JW (1998) Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148:251–265

    PubMed  CAS  Google Scholar 

  • Espinas ML, Jimenez-Garcia E, Vaquero A, Canudas S, Bernues J, Azorin F (1999) The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J Biol Chem 274:16461–16469

    PubMed  CAS  Google Scholar 

  • Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H, Karch F (1994) The Trithorax-like gene encodes the Drosophila GAGAfactor. Nature 371:806–808

    PubMed  CAS  Google Scholar 

  • Farkas G, Leibovitch BA, Elgin SC (2000) Chromatin organization and transcriptional control of gene expression in Drosophila. Gene 253:117–136

    PubMed  CAS  Google Scholar 

  • Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J, Tsukiyama T (2001) Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21:6450–6460

    PubMed  CAS  Google Scholar 

  • Flaus A, Owen-Hughes T (2001) Mechanisms for ATP-dependent chromatin remodelling. Curr Opin Genet Dev 11:148–154

    PubMed  CAS  Google Scholar 

  • Francis NJ, Saurin AJ, Shao Z, Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex. Mol Cell 8:545–556

    PubMed  CAS  Google Scholar 

  • Francis NJ, Kingston RE (2001) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2:409–421

    PubMed  CAS  Google Scholar 

  • Fryer CJ, Archer TK (1998) Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393:88–91

    PubMed  CAS  Google Scholar 

  • Fyodorov DV, Kadonaga JT (2001) The many faces of chromatin remodeling: switching beyond transcription. Cell 106:523–525

    PubMed  CAS  Google Scholar 

  • Geng F, Cao Y, Laurent BC (2001) Essential roles of Snf5p in Snf-Swi chromatin remodeling in vivo. Mol Cell Biol 21:4311–4320

    PubMed  CAS  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, TSUKIYAMA T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433

    PubMed  CAS  Google Scholar 

  • Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–1682

    PubMed  CAS  Google Scholar 

  • Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W, Smith TW, Imbalzano AN, Jones SN (2001) Disruption of Inil leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21:3598–3603

    PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Vignali M, Reese JC, Workman JL (2001a) Promoter targeting of chromatin-modifying complexes. Front Biosci 6:D1054–D1064

    PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL (2001b) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817–827

    PubMed  CAS  Google Scholar 

  • Imbalzano AN, Kwon H, Green MR, Kingston RE (1994) Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485

    PubMed  CAS  Google Scholar 

  • Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT (1999) ACF consists of two subunits, Acfl and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13:1529–1539

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  • Judd BH (1995) Mutations of zeste that mediate transvection are recessive enhancers of position-effect variegation in Drosophila melanogaster. Genetics 141:245–253

    PubMed  CAS  Google Scholar 

  • Kadam S, McAlpine GS, Phelan ML, Kingston RE, Jones KA, Emerson BM (2000) Functional selectivity of recombinant mammalian SWIISNF subunits. Genes Dev 14:2441–2451

    PubMed  CAS  Google Scholar 

  • Kadonaga JT (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313

    PubMed  CAS  Google Scholar 

  • Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP (2000) The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev 14: 1058–1071

    PubMed  CAS  Google Scholar 

  • Katsani KR, Hajibagheri MA, Verrijzer CP (1999) Co-operative DNAbinding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. EMBO J 18:698–708

    PubMed  CAS  Google Scholar 

  • Kehle J, Beuchle O, Treuheit S, Christen B, Kennison JA, Bienz M, Muller J (1998) dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282:1897–1900

    PubMed  CAS  Google Scholar 

  • Kennison JA, Tamkun JW (1988) Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci USA 85:8136–8140

    PubMed  CAS  Google Scholar 

  • Kennison JA (1995) The Polycomb and trithorax group proteins of Drosophila: transregulators of homeotic gene function. Annu Rev Genet 29:289–303

    PubMed  CAS  Google Scholar 

  • Kent NA, Karabetsou N, Politis PK, Mellor J (2001) In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 15:619–626

    PubMed  CAS  Google Scholar 

  • Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13:2339–2352

    PubMed  CAS  Google Scholar 

  • Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M (2000) The murine SNF5/INll chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1:500–506

    PubMed  CAS  Google Scholar 

  • Kowenz-Leutz E, Leutz A (1999) A C/EBP beta isoform recruits the SWIISNF complex to activate myeloid genes. Mol Cell 4:735–743

    PubMed  CAS  Google Scholar 

  • Krebs JE, Kuo MH, Allis CD, Peterson CL (1999) Cell cycle-regulated histone acetylation required for expression of the yeast H0 gene. Genes Dev 13:1412–1421

    PubMed  CAS  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SWl/SNF complex. Nature 370:477–481

    PubMed  CAS  Google Scholar 

  • Laney JD, Biggin MD (1992) Zeste, a nonessential gene, potently activates Ultrabithorax transcription in the Drosophila embryo. Genes Dev 6:1531–1541

    PubMed  CAS  Google Scholar 

  • Langst G, Becker PB (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J Cell Sci 114:2561–2568

    PubMed  CAS  Google Scholar 

  • Lee CH, Murphy MR, Lee JS, Chung JH (1999) Targeting a SWIISNF-related chromatin remodeling complex to the beta-globin promoter in erythroid cells. Proc Natl Acad Sci USA 96:12311–12315

    PubMed  CAS  Google Scholar 

  • Legouy E, Thompson EM, Muchardt C, Renard JP (1998) Differential preimplantation regulation of two mouse homologues of the yeast SWI2 protein. Dev Dyn 212:38–48

    PubMed  CAS  Google Scholar 

  • lemon B, Inouye C, King OS, Tjian R (2001) Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414:924–928

    PubMed  CAS  Google Scholar 

  • Liu R, Liu H, Chen X, Kirby M, Brown PO, Zhao K (2001) Regulation of CSFI pro moter by the SWIISNF-like BAFcomplex. Cell 106:309–318

    PubMed  CAS  Google Scholar 

  • Lyko F, Paro R (1999) Chromosomal elements conferring epigenetic inheritance. Bioessays 21:824–832

    PubMed  CAS  Google Scholar 

  • Mahmoudi T, Verrijzer CP (2001) Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 20:3055–3066

    PubMed  CAS  Google Scholar 

  • Marmorstein R (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2:422–432

    PubMed  CAS  Google Scholar 

  • Mayall TP, Sheridan PL, Montminy MR, Jones KA (1997) Distinct roles for P-CREB and LEF-1 in TCR alpha enhancer assembly and activation on chromatin templates in vitro. Genes Dev 11:887–899

    PubMed  CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283–302

    PubMed  CAS  Google Scholar 

  • Mizuguchi G, Tsukiyama T, Wisniewski J, Wu C (1997) Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol Cell 1:141–150

    PubMed  CAS  Google Scholar 

  • Muchardt C, Yaniv M (2001) When the SWIISNF complex remodels … the cell cycle. Oncogene 20:3067–3075

    PubMed  CAS  Google Scholar 

  • Muller C, Leutz A (2001) Chromatin remodeling in development and differentiation. Curr Opin Genet Dev 11:167–174

    PubMed  CAS  Google Scholar 

  • Munshi N, Agalioti T, Lomvardas S, Merika M, Chen G, Thanos D (2001) Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 10: 1054–1055

    Google Scholar 

  • Murawsky CM, Brehm A, Badenhorst P, Lowe N, Becker PB, Travers AA (2001) Tramtrack69 interacts with the dMi-2 subunit of the Drosophila NuRD chromatin remodelling complex. EMBO Rep 2:1089–1094

    PubMed  CAS  Google Scholar 

  • Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501

    PubMed  CAS  Google Scholar 

  • Narlikar GJ, Phelan ML, Kingston RE (2001) Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol Cell 8:1219–1230

    PubMed  CAS  Google Scholar 

  • Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG (1999) Transcriptional activation by Gcn4p involves independent interactions with the SWIISNF complex and the SRB/mediator. Mol Cell 4:657–664

    PubMed  CAS  Google Scholar 

  • Neely KE, Hassan AH, Wallberg AE, Steger DJ, Cairns BR, Wright AP, Workman JL (1999) Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell 4:649–655

    PubMed  CAS  Google Scholar 

  • Ng J, Hart CM, Morgan K, Simon JA (2000) A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Mol Cell Biol 20:3069–3078

    PubMed  CAS  Google Scholar 

  • Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK, Wang W (2000) A specificity and targeting subunit of a human SWIISNF family-related chromatin-remodeling complex. Mol Cell Biol 20:8879–8888

    PubMed  CAS  Google Scholar 

  • Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F (1995) Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375:316–318

    PubMed  CAS  Google Scholar 

  • Okada M, Hirose S (1998) Chromatin remodeling mediated by Drosophila GAGAfactor and ISWI activates fushi tarazu gene transcription in vitro. Mol Cell BioI 18:2455–2461

    CAS  Google Scholar 

  • Papoulas O, Beek SJ, Moseley SL, Mccallum CM, Sarte M, Shearn A, Tamkun JW (1998) The Drosophila trithorax group proteins BRM,ASHI and ASH2 are subunits of distinct protein complexes. Development 125:3955–3966

    PubMed  CAS  Google Scholar 

  • Paranjape SM, Kamakaka RT, Kadonaga JT (1994) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63: 265–297

    PubMed  CAS  Google Scholar 

  • Pazin MJ, Sheridan PL, Cannon K, CAO Z, Keck JG, Kadonaga JT, Jones KA (1996) NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-l enhancer in vitro. Genes Dev 10:37–49

    PubMed  CAS  Google Scholar 

  • Pedersen TA, Kowenz-Leutz E, Leutz A, Nerlov C (2001) Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev 15:3208–3216

    PubMed  CAS  Google Scholar 

  • Pelegri F, Lehmann R (1994) A role of polycomb group genes in the regulation of gap gene expression in Drosophila. Genetics 136:1341–1353

    PubMed  CAS  Google Scholar 

  • Perkins AC, Sharpe AH, Orkin SH (1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375:318–322

    PubMed  CAS  Google Scholar 

  • Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10:187–192

    PubMed  CAS  Google Scholar 

  • Phelan ML, Sif S, Narlikar GJ, Kingston RE (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3:247–253

    PubMed  CAS  Google Scholar 

  • Phillips MD, Shearn A (1990) Mutations in polycombeotic, a Drosophila polycombgroup gene, cause a wide range of maternal and zygotic phenotypes. Genetics 125: 91–101

    PubMed  CAS  Google Scholar 

  • Pirrotta V, Bickel S, Mariani C (1988) Developmental expression of the Drosophila zeste gene and localization of zeste protein on polytene chromosomes. Genes Dev 2:1839–1850

    PubMed  CAS  Google Scholar 

  • Pirrotta V (1998) Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93:333–336

    PubMed  CAS  Google Scholar 

  • Rastelli L, Chan CS, Pirrotta V (1993) Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J 12:1513–1522

    PubMed  CAS  Google Scholar 

  • Reves JC, Barra J, Muchardt C, Camus A, Babinet C, Yaniv M (1998) Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J 17:6979–6991

    Google Scholar 

  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH (2000) Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 97:13796–13800

    PubMed  CAS  Google Scholar 

  • Rvan MP, Jones R, Morse RH (1998) SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol Cell Biol 18:1774–1782

    Google Scholar 

  • Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P, Kingston RE (2001) A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412:655–660

    PubMed  CAS  Google Scholar 

  • Sawa H, Kouike H, Okano H (2000) Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans. Mol Cell 6:617–624

    PubMed  CAS  Google Scholar 

  • Sevenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D, Jeanpierre C, Jouvet A, Delattre O (1999) Spectrum of hSNF5/INII somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet 8:2359–2368

    PubMed  CAS  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98:37–46

    PubMed  CAS  Google Scholar 

  • Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544

    PubMed  CAS  Google Scholar 

  • Sheridan PL, Sheline CT, Cannon K, Voz ML, Pazin MJ, kadonaga JT, Jones KA (1995) Activation of the HIV-l enhancer by the LEF-1HMG protein on nucleosorneassembled DNA in vitro. Genes Dev 9:2090–2104

    PubMed  CAS  Google Scholar 

  • Staehling-Hampton K, Ciampa PJ, Brook A, Dyson N (1999) A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics 153:275–287

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  Google Scholar 

  • Sudarsanam P, Winston F (2000) The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet 16:345–351

    PubMed  CAS  Google Scholar 

  • Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA (1992) brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68:561–572

    PubMed  CAS  Google Scholar 

  • Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ (2001) The Drosophila Polycomb Group proteins ESCand E(2) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 128: 275–286

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13:686–697

    PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22:836–845

    PubMed  CAS  Google Scholar 

  • Tutter AV, Fryer CJ, Jones KA (2001) Chromatin-specific regulation of LEF-lbeta-catenin transcription activation and inhibition in vitro. Genes Dev 15:3342–3354

    PubMed  CAS  Google Scholar 

  • Utley RT, Cote J, Owen-Hughes T, Workman JL (1997) SWIISNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J Biol Chem 272:12642–12649

    PubMed  CAS  Google Scholar 

  • Van Der Vlag, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EEDinvolves histone deacetylation. Nat Genet 23:474–478

    PubMed  Google Scholar 

  • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602

    PubMed  CAS  Google Scholar 

  • Vazquez M, Moore L, Kennison JA (1999) The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatinremodeling factor to regulate transcription. Development 126:733–742

    PubMed  CAS  Google Scholar 

  • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations ofhSNF5/INII in aggressive paediatric cancer. Nature 394:203–206

    PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatinremodeling complexes. Mol Cell Biol 20:1899–1910

    PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    PubMed  CAS  Google Scholar 

  • Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8:531–543

    PubMed  CAS  Google Scholar 

  • Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED, Wang W (2000) The human SWIISNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA 97:13015–13020

    PubMed  CAS  Google Scholar 

  • Yudkovsky N, Logie C, Hahn S, Peterson CL (1999) Recruitment of the SWIISNF chromatin remodeling complex by transcriptional activators. Genes Dev 13:2369–2374

    PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katsani, K.R., Mahmoudi, T., Verrijzer, C.P. (2003). Selective Gene Regulation by SWI/SNF-Related Chromatin Remodeling Factors. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics