Skip to main content

SMC Protein Complexes and the Maintenance of Chromosome Integrity

  • Chapter
Protein Complexes that Modify Chromatin

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

Structural maintenance of chromosomes (SMC) family proteins have attracted much attention for their unique protein structure and critical roles in mitotic chromosome organization. Elegant genetic and biochemical studies in yeast and Xenopus identified two different SMC heterodimers in two conserved multiprotein complexes termed ‘condensin’ and ‘cohesin’, These complexes are required for mitotic chromosome condensation and sister chromatid cohesion, respectively, both of which are prerequisite to accurate segregation of chromosomes. Although structurally similar, the SMC proteins in condensin and cohesin appear to have distinct functions, whose specificity and cell cycle regulation are critically determined by their interactions with unique sets of associated proteins. Recent studies of subcellular localization of SMC proteins and SMC-containing complexes, identification of their interactions with other cellular factors, and discovery of new SMC family members have uncovered unexpected roles for SMCproteins and SMC-containing complexes in different aspects of genome functions and chromosome organization beyond mitosis, all of which are critical for the maintenance of chromosome integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RR, Maiato M, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–879

    Article  PubMed  CAS  Google Scholar 

  • Akhmedov AT, Frei C, Tsai-Pflugfelder M, Kemper B, Gasser SM, Jessberger R (1998) Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J Biol Chem 273:24088–24094

    Article  PubMed  CAS  Google Scholar 

  • Akhmedov AT, Gross B, Jessberger R (1999) Mammalian SMC3 C-terminal and coiled-coil protein domains specifically bind palindromic DNA,do not block DNA ends, and prevent DNA bending. J Biol Chern 274:38216–38224

    Article  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  PubMed  CAS  Google Scholar 

  • Aono N, Sutani T, Tomonaga T, Mochida S, Yanagida M (2002) Cnd2 has dual roles in mitotic condensation and interphase. Nature 417:197–202

    Article  PubMed  CAS  Google Scholar 

  • Ball Jr AR, Schmiesing JA, Zhou C, Gregson HC, Okada Y, Dol T, Yokomori K (2002) Identification of a chromosome-targeting domain in the human condensin subunit CNAP1/hCAP-D2/Eg7. Mol Cell Biol 22:5769–5781

    Article  PubMed  CAS  Google Scholar 

  • Bazett-Jones DP, Kimura K, Hirano T (2002) Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol Cell 9:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Maure J-F, Partridge JF, Genier S, Javerzat J-P, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542

    Article  PubMed  CAS  Google Scholar 

  • Bhat MA, Philp AV, Glover DM, Bellen HJ (1996) Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell 87:1103–1114

    Article  PubMed  Google Scholar 

  • Birkenbihl RP, Subramani S (1992) Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nuc Acids Res 25:6605–6611

    Article  Google Scholar 

  • Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98: 249–259

    Article  PubMed  CAS  Google Scholar 

  • Cabello OA, Eliseeva E, He W-G, Youssoufian H, Plon SE, Brinkley BR, Belmont JW (2001) Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell 12:3527–3537

    PubMed  CAS  Google Scholar 

  • Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates 3rd JR, Hays L, Morgan WF, Petrini JH (1998) The hMrell/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNAdamage response. Cell 93:477–486

    Article  PubMed  CAS  Google Scholar 

  • Carson DR, Christman MF (2001) Evidence that replication fork components catalyze establishment of cohesion between sister chromatids. Proc Natl Acad Sci 98: 8270–8275

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, Albertson DG, Meyer BJ (1994) DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with Xchromosome. Cell 79:459–474

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M (1998) An ESP1/PDSI complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Cobbe N, Heck, MM (2000) Review: SMCs in the world of chromosome biology-from prokaryotes to higher eukaryotes. J Struc Biol 129:123–143

    Article  CAS  Google Scholar 

  • Collas P, Leguellec K, Tasken K (1999) The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis. J Cell Biol 147:1167–1179

    Article  PubMed  CAS  Google Scholar 

  • Compton DA, Luo C (1995) Mutation of the predicted p34cdc2 phosphorylation sites in NuMA impair the assembly of the mitotic spindle and block mitosis. J Cell Sci 108:621–633

    PubMed  CAS  Google Scholar 

  • Cubizolles F, Legagneux V, Leguellec R, Chartrain I, Uzbekov R, Ford C, Le Guellec K (1998) pEg7, a new Xenopus protein required for mitotic chromosome condensation in egg extracts. J Cell Biol 143:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Darwiche N, Freeman LA, Strunnikov A (1999) Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene 233:39–47

    Article  PubMed  CAS  Google Scholar 

  • Dasika GK, Lin S-CJ, Zhao S, Sung P, Tomkinson A, Lee EY-HP (1999) DNA-damageinduced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18:7883–7899

    Article  PubMed  CAS  Google Scholar 

  • De Belle I, Cai S, Kohwi-Shigematsu T (1998) The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol 141:335–348

    Article  PubMed  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Ratrie HD, Stetten G (1989) Visualization of centromere proteins CENP-Band CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12

    Article  PubMed  CAS  Google Scholar 

  • Eide T, Coghlan S, Orstavik C, Holsve R, Solberg R, Skalhegg BS, Lamb NJ, Langeberg L, Fernandez A, Scott JD, Jahnsen T, Tasken K (1998) Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKA95. Exp. Cell Res 238: 305–316

    Article  PubMed  CAS  Google Scholar 

  • Eide T, Carlson C, Tasken KA, Hirano T, Tasken K, Collas P (2002) Distinct but overlapping domains of AKAP95are implicated in chromosome condensation and condensin targeting. EMBO rep. 3:426–432

    Article  PubMed  CAS  Google Scholar 

  • Fousteri MI, Lehmann AR (2000) A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNArepair protein. EMBOJ 19:1691–1702

    Article  CAS  Google Scholar 

  • Freeman L, Aragon-Alcalde L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824

    Article  PubMed  CAS  Google Scholar 

  • Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K (2002) Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5-SMC6complex involved in DNArepair. J Biol Chem 277:21585–21591

    Article  PubMed  CAS  Google Scholar 

  • Gaglio T, Saredi A, Compton DA (1995) NuMA is required for the organization of microtubules into aster-like mitotic arrays. J Cell Biol 131:693–708

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, Corces VG (1998) Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92:511–521

    Article  PubMed  CAS  Google Scholar 

  • Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–681

    Article  PubMed  CAS  Google Scholar 

  • Gregson HC, Schmiesing JA, Kim J-S, Kobayashi T, Zhou S, Yokomori K (2001) A potential role for human cohesin in mitotic spindle aster assembly. J Biol Chem 276:47575–47582

    Article  PubMed  CAS  Google Scholar 

  • Gregson HC, Van Hooser AA, Ball Jr, AR, Brinkley BR, Yokomori K (2002) Localization of human SMCI protein at kinetochores. Chrom Res 10:267–277

    Article  PubMed  CAS  Google Scholar 

  • Guacci V, Koshland D, Strunnikov A (1997) Adirect link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMCproteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742

    Article  PubMed  CAS  Google Scholar 

  • Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002) A chromatin remodeling complex that loads cohesin onto human chromosomes. Nature 418:994–998

    Article  PubMed  CAS  Google Scholar 

  • Hartman T, Stead D, Koshland D, Guacci V (2000) Pds5 is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151:613–626

    Article  PubMed  CAS  Google Scholar 

  • Hauf S, Waizenegger IC, Peters J-M (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293:1320–1323

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2000) Chromosome cohesion, condensation, and separation. Annu Rev Biochem 69:115–144

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev 16:399–414

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (1999) SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev 13:11–19

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Anderson DE, Erickson HP, Hirano T (2001) Bimodal activation of SMCATPase by intra-and inter-molecular interactions. EMBO J 20:3238–3250

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E, and a Xenopus homolog of the Drosophila barren protein. Cell 89:511–521

    Article  PubMed  CAS  Google Scholar 

  • Hoque MT, Ishikawa F (2001) Human chromatid cohesin component hRad21 is phosphorylated in M phase and associated with metaphase centromeres. J Biol Chem 276:5059–5067

    Article  PubMed  CAS  Google Scholar 

  • Jessberger R, Riwar B, Baechtold H, Akhmedov AT (1996) SMC proteins constitute two subunits of the mammalian recombination complex RC-l. EMBO J 15:4061–4068

    PubMed  CAS  Google Scholar 

  • Kaitna S, Mendoza M, Antsch-Plunger V, Glotzer M (2000) Incenp and an Aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10:1172–1181

    Article  PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNAdouble-strand breaks: signaling, repair and the cancer connection. Nature Gen. 27:247–254

    Article  CAS  Google Scholar 

  • Kim S-T, Xu B, Kastan MB (2002) Involvement of the cohesin protein, SmcI, in Atmdependent and independent responses to DNAdamage. Genes & Dev 16:560–570

    Article  CAS  Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNAby 135condensin: a biochemical implication for chromosome condensation. Cell 90:625–634

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano M, Kobayashi R, Hirano T (1998) Phosphorylation and activation of 13Scondensin by Cdc2 in vitro. Science 282:487–490

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Rybenkov VV, Crisona NI, Hirano T, Cozzarelli NR (1999) 13S condensin actively reconfigures DNA by introducing global positive writhe: implication for chromosome condensation. Cell 98:239–248

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano T (2000) Dual roles of the 11S regulatory subcomplex in condensin functions. Proc Natl Acad Sci USA 97:11972–11977

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Cuvier O, Hirano T (2001) Chromosome condensation by a human condensin complex in Xenopus egg extracts. J Biol Chem 276:5417–5420

    Article  PubMed  CAS  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  PubMed  CAS  Google Scholar 

  • Laloraya S, Guacci V, Koshland D (2000) Chromosomal addresses of the cohesin component Mcdl p. J Cell Biol 151:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Orr-Weaver TL (2001) The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17:753–777

    Article  PubMed  CAS  Google Scholar 

  • Lieb JD, Albrecht MR, Chuang P-T, Meyer BJ (1998) MIX-I: an essential component of the C. elegans mitotic machinery executes Xchromosome dosage compensation. Cell 92:265–277

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMCprotein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Yokochi T, Kobayashi R, Hirano T (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol 150:405–416

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano T (2000) Biology in pictures. New light on sticky sisters. Curr Biol 10:R615

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano T (2001) Intermolecular DNA interactions stimulated by the cohesin complex in vitro: Implications for sister chromatid cohesion. Curr Biol 11: 268–272

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Cordell SC, Van Den Ent F (2001) Crystal structure of the SMC head domain: an ABCATPase with 900 residues antiparallel coiled-coil inserted. J Mol Biol 306:25–35

    Article  PubMed  CAS  Google Scholar 

  • Lupo R, Breiling A, Bianchi ME, Orlando V (2001) Drosophila chromosome condensation proteins topoisomerase II and barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol Cell 7:127–136

    Article  PubMed  CAS  Google Scholar 

  • Lydersen BK, Pettijohn DE (1980) Human specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell 22:489–499

    Article  PubMed  CAS  Google Scholar 

  • Maccallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: Identification as major chromosomal components that are regulated by INCENP-aurora B Mol Biol Cell 13:25–39

    Article  PubMed  CAS  Google Scholar 

  • Mack GJ, Compton DA (2001) Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc Natl Acad Sci 98:14434–14439

    Article  PubMed  CAS  Google Scholar 

  • Mackay AM, Ainsztein AM, Eckley DM, Earnshaw WC (1998) A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J Cell Biol 140:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Megee PC, Koshland D (1999) A functional assay for centromere-associated sister chromatid cohesion. Science 285:254–257

    Article  PubMed  CAS  Google Scholar 

  • Megee PC, Mistrot C, Guacci V, Koshland D (1999) The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol Cell 4: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: Long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458

    Article  PubMed  CAS  Google Scholar 

  • Merry DE, Pathak S, Hsu TC, Brinkley BR (1985) Anti-kinetochore antibodies: use as probes for inactive centromeres. Am J Hum Genet 37:425–30

    PubMed  CAS  Google Scholar 

  • Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  PubMed  CAS  Google Scholar 

  • Morishita J, Matsusaka T, Goshima G, Nakamura T, Tatebe H, Yanagida M (2001) Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes to Cells 6: 743–763

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SIS (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1999) Separating sister chromatids. Trends Biochem Sci 24:98–104

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Peters J-M, Uhlmann F (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288:1379–1384

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev.Genet. 35:673–745

    Article  PubMed  CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SS, Watanabe Y (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HPI in fission yeast. Nat Cell Biol 4:89–93

    Article  PubMed  CAS  Google Scholar 

  • Paniza S, Tanaka T, Hochwagen A, Eisenhaber F, Nasmyth K (2000) Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 10:1557–1564

    Article  Google Scholar 

  • Pederson T (2000) Half a century of ‘the nuclear matrix’. Mol Biol Cell 11:799–805

    PubMed  CAS  Google Scholar 

  • Petrini JH (2000) The Mrel1 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 12:293–296

    Article  PubMed  CAS  Google Scholar 

  • Prieto I, Suja JA, Pezzi N, Kremer L, Martínez-A. C, Rufas JS, Barbero JL (2001) Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3:761–766

    Article  PubMed  CAS  Google Scholar 

  • Revenkova EM. Eijpe, C. Heyting, B. Gross A, Jessberger R (2001) Novel meiosisspecific isoform of mammalian SMCI. Mol Cell Biol 21:6984–6998

    Article  PubMed  CAS  Google Scholar 

  • Schmiesing JA, Ball AR, Gregson HC, Alderton J, Zhou S, Yokomori K (1998) Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics. Proc. Natl. Acad. Sci. USA 95:12906–12911

    Article  PubMed  CAS  Google Scholar 

  • Schmiesing JA, Gregson HC, Zhou S, Yokomori K (2000) A human condensin complex containing hCAP-C/hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol. Cell. Biol. 20:6996–7006

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y, Rotman G (1996) Ataxia-telangiectasia and the ATM gene: linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J Clin ImmunoI 16:254–260

    Article  CAS  Google Scholar 

  • Shiloh Y (2001) ATMand ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11:71–77

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Shirataki H, Honda T, Minami S, Takai Y (1998) Complex formation of SMAPIKAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. J Biol Chem 273:6591–6594

    Article  PubMed  CAS  Google Scholar 

  • Sjögren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11: 991–995

    Article  PubMed  Google Scholar 

  • Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S (2001) Scc1/Rad21/Mcdl is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev.Cell 1:759–770

    Article  PubMed  CAS  Google Scholar 

  • Steen RL, Cubizolles F, Leguellec K, Collas P (2000) Akinase-anchoring protein (AKAP)95 recruits human chromosome-associated protein (hCAP)-D2/Eg7 for chromosome condensation in mitotic extract. J Cell Biol 149:531–536

    Article  PubMed  CAS  Google Scholar 

  • Steffensen S, Coelho PA, Cobbe N, Vass S, Costa M, Hassan B, Prokopenko SN, Bellen H, Heck MMS, Sunkel CE (2001) A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr Biol 11:295–307

    Article  PubMed  CAS  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NGJ, Raams A, Byrd PI, Petrini JH, Taylor AMR (1999) The DNAdouble-strand break repair gene hMREll is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Larionov VL, Koshland D (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol 123:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Hogan E, Koshland D (1995) SMC2, a Saccharomyces cerevisiae gene essential fro chromosome and condensation, defines a subgroup within the SMCfamily. Genes Dev 9:587–599

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Jessberger R (1999) Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem 263:6–13

    Article  PubMed  CAS  Google Scholar 

  • Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters J-M (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–761

    Article  PubMed  CAS  Google Scholar 

  • Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA, Peters J-M (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9:515–525

    Article  PubMed  CAS  Google Scholar 

  • Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M (1999) Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev 13:2271–2283

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Cosma MP, Wirth K, Nasmyth K (1999) Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847–858

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Fuchs I, Loidl I, Nasmyth K (2000) Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol 2:492–9

    Article  PubMed  CAS  Google Scholar 

  • Taylor EM, Moghraby JS, Lees JH, Smit B, Moens PB, Lehmann AR (2001) Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad 18/Spr18 complex. Mol Biol Cell 12:1583–1594

    PubMed  CAS  Google Scholar 

  • Tomonaga T, Nagao K, Kawasaki Y, Furuya K, Murakami A, Morishita J, Yuasa T, Sutani T, Kearsey SE, Uhlmann F, Nasmyth K, Yanagida M (2000) Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad2l phosphorylated in the S phase. Genes & Dev 14:2757–2770

    Article  CAS  Google Scholar 

  • Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999) Yeast cohesin complex requires a conserved protein, Eco1p (CtfZ), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–333

    Article  PubMed  CAS  Google Scholar 

  • Udvardy A (1999) Dividing the empire: boundary chromatin elements delimit the territory of enhancers. EMBO J 18:1–8

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Sccl. Nature 400: 37–42

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F, Wernic D, Poupart M-A, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103: 375–386

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TI, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, AND Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–3542

    PubMed  CAS  Google Scholar 

  • Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanova E, Cooper PR, Nowak NJ, Stumm M, Weemaes CMR, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Sperling K, Concannon P, Reis A (1998) Nibrin, a novel DNA double-strand break repair stem cell lethality) abnormal embryonic development) and sensitivity protein) is mutated in Nijmegen breakage syndrome. Cell 93:467–476

    Article  PubMed  CAS  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters J-M (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Castaño IB, De Las Peñas A, Adams C, Christman MF (2000) Pol K: a DNA polymerase required for sister chromatid cohesion. Science 289:774–779.

    Article  PubMed  CAS  Google Scholar 

  • Warren W, Steffensen S, Line , Coelho P, Loupart M, Cobbe N, Lee J, Mckay M, Orr-Weaver T, Heck M, Sunkel C (2000) the drosophila rad21 cohesin persists at the centromere region in mitosis. curr biol 10:1463–6

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston DM, Weaver DT (2000) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405:477–481

    Article  PubMed  CAS  Google Scholar 

  • Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY-HP, Qin J (2002) SMC1 is a downstream effector in the ATM/NBSI branch of the human S-phase checkpoint. Genes & Dev 16:571–582

    Article  CAS  Google Scholar 

  • Yoshimura SH, Hizume H, Murakami A, Sutani T, Takeyasu K, Yanagida M (2002) Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMCheterodimer. Curr Biol 12:508–513

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OI, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWIISNF-like BAFcomplex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Weng Y-C, Yuan S-SF, Lin Y-T, Hsu H-C, Lin S-CJ, Gerbino E, Song M-H, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY-HP (2000) Functional link between ataxia-telangiectasia and Nijmegen Greakage syndrome gene products. Nature 405:473–477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yokomori, K. (2003). SMC Protein Complexes and the Maintenance of Chromosome Integrity. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics