Skip to main content

HP1 Complexes and Heterochromatin Assembly

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

Since its discovery almost two decades ago, heterochromatin protein 1 (HP1) has emerged as a major player in the transcriptional regulation of both heterochromatic and euchromatic genes as well as the mechanics of chromosome segregation and the functional and structural organization of the interphase nucleus. Recent years have brought the identification of a myriad of HP1-interacting proteins. Each of these is discussed in relationship to its role in heterochromatin assembly and HP1 function. The breadth of functions represented by HP1-interacting proteins testifies to its pivotal role in the daily operations of the nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923–1938

    Article  PubMed  CAS  Google Scholar 

  • Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HPl. Nucl Acids Res 23:3168–3174

    Article  PubMed  CAS  Google Scholar 

  • Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2001) Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153:101–110

    Article  PubMed  CAS  Google Scholar 

  • Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein 1 HP1. J Cell Biol 143:1763–1774

    Article  PubMed  CAS  Google Scholar 

  • Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233

    Article  PubMed  CAS  Google Scholar 

  • Bahri SM, Chia W, Yang X (2001) The Drosophila homolog of human AF10/AF17 leukemia fusion genes (Dalf) encodes a zinc finger/leucine zipper nuclear protein required in the nervous system for maintaining EVE expression and normal growth. Mech Dev 100:291–301

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas TO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Stillman B (1992) ATP-dependent recognition of eucaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Maure J-F, Partridge JF, Genier S, Javerzat J-P, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542

    Article  PubMed  CAS  Google Scholar 

  • Brasher SV, Smith BO, Rasmus RH, Nietlispach D, Thiru A, Nielsen PR, Broadhurst RW, Ball LJ, Murzina NV, Laue ED (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19:1587–1597

    Article  PubMed  CAS  Google Scholar 

  • Chien CT, Buck S, Sternglanz R, Shore D (1993) Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75:531–541

    Article  PubMed  CAS  Google Scholar 

  • Cleard F, Matsarskaia M, Spierer P (1995) SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J 16:5280–5288

    Article  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1, and methylation at lysine 9 of histone H3 in animals. Chromosoma DOI 10.1007/s00412-0020182-8

    Google Scholar 

  • Cowieson NP, Partridge JF, Allshire RC, McLaughlin PJ (2000) Dimerization of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol 10:517–525

    Article  PubMed  CAS  Google Scholar 

  • Csink AK, Henikoff S (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381:529–531

    Article  PubMed  CAS  Google Scholar 

  • Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, De Bruun DRH, Meese E, Young BD (2002) The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99:275–281

    Article  PubMed  Google Scholar 

  • Delattre M, Spierer A, Tonka C-H, Spierer P (2000) The genomic silencing of position-effect variegation in Drosophila melanogaster: interaction between the heterochromatin-associated proteins Su(var)3-7 and HP1. J Cell Sci 113:4253–4261

    PubMed  CAS  Google Scholar 

  • Dernburg AF, Broman KW, Fung JC, Marshall WF, Phillips J, Agard DA, Sedat JW (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85:745–759

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Tharappel CJ, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SCR (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Hartnett T (1993) A heat shock-activated cDNA rescues the recessive lethality of mutations in the heterochromatin-associated protein HPI of Drosophila melanogaster. Mol Gen Genet 240: 333–338

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, Guo YW, Hartnett T (1994) Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. J Biol Chem 269:21315–21321

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, Hilliker AJ (2000) Versatility of conviction: heterochromatin as both a repressor and an activator of transcription. Genetica 109:19–24

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Elgin SCR (2000) The HPI protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC (2001) Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 275:19–29

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Javerzat J-P, Lorentz A, Schmidt H, Cranston G, Allshire RC (1995) The chromodomain protein Swi6: A key component at fission yeast centromeres. Science 269:1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Enomoto S, Berman J (1998) Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12:219–232

    Article  PubMed  CAS  Google Scholar 

  • Fanti L, Giovinazzo G, Berloco M, Pimpinelli A (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2:527–538

    Article  PubMed  CAS  Google Scholar 

  • Festenstein R, Sharghi-Namini S, Fox M, Roderick K, Tolaini M, Norton T, Saveliev A, Kioussis D, Singh P (1999) Heterochromatin protein 1 modifies mammalian PEV in a dose-and chromosomal-context-dependent manner. Nat Genet 23:457–461

    Article  PubMed  CAS  Google Scholar 

  • Firestein R, Xiangmin C, Huie P, Cleary ML (2000) Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol 20:4900–4909

    Article  PubMed  CAS  Google Scholar 

  • Fox CA, Ehrenhofer-MuRray AE, Lao S, Rine J (1997) The origin recognition complex, SIR1,and the S phase requirement for silencing. Science 276:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Scheer U, Krohne G, Jarash E (1981) The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol 91:39–50

    Article  CAS  Google Scholar 

  • Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher III FJ (1996) KAP-l, a novel corepressor for the highly conserved KRAB repression domain. Gene Dev 10:2067–2078

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, Picketts DJ, Villard L, Higgs DR (1995) Mutations In a Putative Global Transcriptional Regulator Cause X-linked Mental Retardation with α-thalassemia (ATR-X syndrome) Cell 80:837–845

    Article  PubMed  CAS  Google Scholar 

  • Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM (1996) The clustering of telomeres and colocalization with Rap1,Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134:1349–1363

    Article  PubMed  CAS  Google Scholar 

  • Hancock R, Boulikas T (1982) Functional organization in the nucleus. Int Rev Cytol 79:165–214

    Article  PubMed  CAS  Google Scholar 

  • Hearn MG, Hedrick A, Grigliatti TA, Wakimoto BT (1991) The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 128:785–797

    PubMed  CAS  Google Scholar 

  • Hecht A, Loroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: molecular model for the formation of heterochromatin in yeast. Cell 80:583–592

    Article  PubMed  CAS  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. I Jahrb, Wissensch Bot 69:762–818

    Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazettjones DP, Allis CD (1997) Mitosis specific phosphorylation of histone H3 initiates primarily within percentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  PubMed  CAS  Google Scholar 

  • Huang DW, Fanti L, Pak DTS, Botchan MR, Pimpinelli S, Kellum R (1998) Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J Cell Biol 142:307–318

    Article  PubMed  CAS  Google Scholar 

  • Hwang K-K, Eissenberg JC, Worman HJ (2001) Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers Proc Natl Acad Sci USA 98:11423–11427

    Article  PubMed  CAS  Google Scholar 

  • Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJS (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet 19:192–195

    Article  PubMed  CAS  Google Scholar 

  • Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBOJ 20:5232–5241

    Article  CAS  Google Scholar 

  • James TC Elgin SCR (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    PubMed  CAS  Google Scholar 

  • Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J Cell Sci 108:1419–1431

    PubMed  CAS  Google Scholar 

  • Kirschmann DA, Lininger RA, Gardner LMG, Seftor EA, Odero VA, Ainsztein AM, Earnshaw WC, Wallrath LL, Hendrix MJC (2000) Down-regulation of HP1Hsa expression is associated with the metastatic phenotype in breast cancer. Cancer Res 60:3359–3363

    PubMed  CAS  Google Scholar 

  • Kit S (1961) Equilibrium sedimentation in density gradients of DNApreparations for animal tissues. J Mol Biol 3:711–716

    Article  PubMed  CAS  Google Scholar 

  • Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SMM (2000) Identification of heterochromatin protein (HPl) as a phosphorylation target by Pim-I kinase and the effect of phosphorylation on the transcriptional repression function of HP1. FEBS Lettr 467:17–21

    Article  CAS  Google Scholar 

  • Kourmouli N, Theodoropoulos PA, DialynaS G, Bakou A, Politou AS

    Google Scholar 

  • Cowell IG, Singh PB, Georgatos SD (2000) Dynamic associations of heterochromatin protein 1 with the nuclear envelope. EMBOJ 19:6558–6568

    Article  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3lysine 9 creates a binding site for HPI proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  • Lechner MS, Begg GE, Speicher DW, Rauscher FJ (2000) Molecular determinants for targeting heterochromatin protein l-mediated gene silencing: Direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 20:6449–6465

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin B, Nielsen A, Garnier J-M, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIFlα and TIF1β in the epigenetic control of transcription by nuclear receptors. EMBOJ 15:6701–6715

    Google Scholar 

  • Lee JY, Orr-Weaver TL (2001) The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17:753–777

    Article  PubMed  CAS  Google Scholar 

  • Lehming N, Le Saux A, Schuller J, Ptashne M (1998) Chromatin components as part of a putative transcriptional repressing complex. Proc Natl Acad Sci USA 95:7322–7326

    Article  PubMed  CAS  Google Scholar 

  • Lima De Faria A, Jaworska H (1968) Late DNA synthesis in heterochromatin. Nature 217:138–142

    Article  Google Scholar 

  • Linder B, Gerlach N, Jackle H (2001) The Drosophila homolog of the human AF10 is an HPI-interacting suppressor of position effect variegation. EMBO Rep 2:211–216

    Article  PubMed  CAS  Google Scholar 

  • Locke I, Kotarski MA, Tartof KD (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120:181–198

    PubMed  CAS  Google Scholar 

  • Lorentz A, Ostermann K, Fleck O, Schmidt H (1994) Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene 143:139–143

    Article  PubMed  CAS  Google Scholar 

  • Matsuda E, Agata Y, Sagai M, Katakai T, Gonda H, Shimizu A (2001) Targeting of Kruppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. J Biol Chem 276:14222–14229

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Worman HI, Courvalin J-C, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  PubMed  CAS  Google Scholar 

  • Moazed O (2001) Common themes in mechanisms of gene silencing. Mol Cell 8:489–498

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334

    Article  Google Scholar 

  • Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4:529–540

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SIS (2001a) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  PubMed  CAS  Google Scholar 

  • Nakayama I, Allshire RC, Klar AJS, Grewal SIS (2001b) A role for DNA polymerase a in epigenetic control of transcriptional silencing in fission yeast. EMBOJ 11:2857–2866

    Article  Google Scholar 

  • Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Lossox R (1999) Interaction with members of the heterochromatin protein 1 (HPl) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBOJ 18:6385–6395

    Article  CAS  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P

    Google Scholar 

  • Losson R (2001a) Heterochromatin formation in mammalian cells: Interaction between histones and HPI proteins. Mol Cell 7:729–739

    Article  PubMed  Google Scholar 

  • Nielsen SI, Schneider R, Bauer UM, Bannister AI, Morrison A, O’Carroll D

    Google Scholar 

  • Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (2001b) Rb targets histone H3 methylation and HPI to promoters. Nature 412:561–565

    Article  PubMed  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SIS, Watanabe Y (2001) Recruitment of cohesin to heterochromatic regions by Swi6/HP 1 in fission yeast 4:89–93

    Google Scholar 

  • Pak DTS, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr I, Romanowski P, Botchan M (1997) Association of the origin recognition complex with heterochromatin and HPI in higher eukaryotes. Cell 91:311–323

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791

    PubMed  CAS  Google Scholar 

  • Polioudaki H, KoUrmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep 2:920–925

    Article  PubMed  CAS  Google Scholar 

  • Powers JA, Eissenberg IC (1993) Overlapping domains of the heterochromatin-associated protein HP1 mediate nuclear localization and heterochromatin binding. J Cell Biol 120:291–299

    Article  PubMed  CAS  Google Scholar 

  • Rae PM (1970) Chromosomal distribution of rapidly reannealing DNA in Drosophila melanogaster. Proc Natl Acad Sci USA 67:1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Reuter G, Giarre M, Farah J, Gausz I, Spierer A, Spierer P (1990) Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344:219–233

    Article  PubMed  CAS  Google Scholar 

  • Ris H, Korenberg RD (1979) Chromosome structure and levels of chromosome organization. In The Structure and Replication of Genetic Material. Ed. DM Prescott and L Goldstein, pp 268–361. New York: Academic Press

    Google Scholar 

  • Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WI, Rauscher III FJ (1999) KAP-l corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-Zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 19:4366–4378

    PubMed  CAS  Google Scholar 

  • Seeler J-S, Dejean A (1999) The PML nuclear bodies: actors or extras? Curr Opin Genet Dev 9:362–367

    Article  PubMed  CAS  Google Scholar 

  • Seeler IS, Marchio A, Sitterlin D, Transy C, Deejan A (1998) Interaction ofSPI00 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci USA 95:7316–7321

    Article  PubMed  CAS  Google Scholar 

  • Seum C, Delattre M, Spierer A, Spierer P (2001) Ectopic HPI promotes chromosome loops and variegated silencing in Drosophila. EMBO J 20:812–818

    Article  PubMed  CAS  Google Scholar 

  • Shareef MM, King C, Damaj M, Badagu R-K, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12:1671–1685

    PubMed  CAS  Google Scholar 

  • Sinclair DAR, Mottus RC, Grigliatti TA (1983) Genes which suppress positioneffect variegation in Drosophila melanogaster are clustered. Mol Gen Genet 191:326–333

    Article  CAS  Google Scholar 

  • Smothers IF, Henikoff S (2000) The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol 10:27–30

    Article  PubMed  CAS  Google Scholar 

  • Smothers IF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21:2555–2569

    Article  PubMed  CAS  Google Scholar 

  • Song K, Jung Y, Jung D, Lee I (2001) Human Ku70interacts with heterochromatin protein 1α J Biol Chem 276:8321–8327

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Roche D, Sibarita J-B, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166

    Article  PubMed  CAS  Google Scholar 

  • Turner BM, Birley AI (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    Article  PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104

    Article  PubMed  CAS  Google Scholar 

  • Wallrath LL, Elgin SCR (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9:1263–1277

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Ma A, Chow C-M, Horsley D, Brown NR, Cowell IG, Singh PB (2000) Conservation of heterochromatin protein 1 function. Mol Cell Biol 20:6970–6983

    Article  PubMed  CAS  Google Scholar 

  • Wustmann G, Szidonya I, Taubert H, Reuter G (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet 217:520–527

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Fukuda R, Himeno M, Sugimoto K (1999) Functional domain structure of human heterochromatin protein HP1Hsα, involvement of internal DNA-binding and C-terminal self-association domains in the formation of discrete dots in inter-phase nuclei. J Biochem 125:832–837

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Worman HI (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HPl. J Biol Chem 271:14653–14656

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Heyduk T, Allis CD, Eissenberg IC (2000) Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J Biol Chem 275:28332–28338

    PubMed  CAS  Google Scholar 

  • Zhao T, Heyduk T, Eissenberg IC (2001) Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J Biol Chem 276:9512–9518

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellum, R. (2003). HP1 Complexes and Heterochromatin Assembly. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics