Advertisement

HP1 Complexes and Heterochromatin Assembly

Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 274)

Abstract

Since its discovery almost two decades ago, heterochromatin protein 1 (HP1) has emerged as a major player in the transcriptional regulation of both heterochromatic and euchromatic genes as well as the mechanics of chromosome segregation and the functional and structural organization of the interphase nucleus. Recent years have brought the identification of a myriad of HP1-interacting proteins. Each of these is discussed in relationship to its role in heterochromatin assembly and HP1 function. The breadth of functions represented by HP1-interacting proteins testifies to its pivotal role in the daily operations of the nucleus.

Keywords

Fission Yeast Origin Recognition Complex Position Effect Variegation Chromatin Assembly Factor Heterochromatin Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923–1938PubMedCrossRefGoogle Scholar
  2. Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HPl. Nucl Acids Res 23:3168–3174PubMedCrossRefGoogle Scholar
  3. Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54PubMedCrossRefGoogle Scholar
  4. Ahmad K, Henikoff S (2001) Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153:101–110PubMedCrossRefGoogle Scholar
  5. Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein 1 HP1. J Cell Biol 143:1763–1774PubMedCrossRefGoogle Scholar
  6. Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233PubMedCrossRefGoogle Scholar
  7. Bahri SM, Chia W, Yang X (2001) The Drosophila homolog of human AF10/AF17 leukemia fusion genes (Dalf) encodes a zinc finger/leucine zipper nuclear protein required in the nervous system for maintaining EVE expression and normal growth. Mech Dev 100:291–301PubMedCrossRefGoogle Scholar
  8. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas TO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124PubMedCrossRefGoogle Scholar
  9. Bell SP, Stillman B (1992) ATP-dependent recognition of eucaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134PubMedCrossRefGoogle Scholar
  10. Bernard P, Maure J-F, Partridge JF, Genier S, Javerzat J-P, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542PubMedCrossRefGoogle Scholar
  11. Brasher SV, Smith BO, Rasmus RH, Nietlispach D, Thiru A, Nielsen PR, Broadhurst RW, Ball LJ, Murzina NV, Laue ED (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19:1587–1597PubMedCrossRefGoogle Scholar
  12. Chien CT, Buck S, Sternglanz R, Shore D (1993) Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75:531–541PubMedCrossRefGoogle Scholar
  13. Cleard F, Matsarskaia M, Spierer P (1995) SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J 16:5280–5288CrossRefGoogle Scholar
  14. Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1, and methylation at lysine 9 of histone H3 in animals. Chromosoma DOI 10.1007/s00412-0020182-8Google Scholar
  15. Cowieson NP, Partridge JF, Allshire RC, McLaughlin PJ (2000) Dimerization of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol 10:517–525PubMedCrossRefGoogle Scholar
  16. Csink AK, Henikoff S (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381:529–531PubMedCrossRefGoogle Scholar
  17. Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, De Bruun DRH, Meese E, Young BD (2002) The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99:275–281PubMedCrossRefGoogle Scholar
  18. Delattre M, Spierer A, Tonka C-H, Spierer P (2000) The genomic silencing of position-effect variegation in Drosophila melanogaster: interaction between the heterochromatin-associated proteins Su(var)3-7 and HP1. J Cell Sci 113:4253–4261PubMedGoogle Scholar
  19. Dernburg AF, Broman KW, Fung JC, Marshall WF, Phillips J, Agard DA, Sedat JW (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85:745–759PubMedCrossRefGoogle Scholar
  20. Eissenberg JC, Tharappel CJ, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SCR (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927PubMedCrossRefGoogle Scholar
  21. Eissenberg JC, Hartnett T (1993) A heat shock-activated cDNA rescues the recessive lethality of mutations in the heterochromatin-associated protein HPI of Drosophila melanogaster. Mol Gen Genet 240: 333–338PubMedGoogle Scholar
  22. Eissenberg JC, Guo YW, Hartnett T (1994) Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. J Biol Chem 269:21315–21321PubMedGoogle Scholar
  23. Eissenberg JC, Hilliker AJ (2000) Versatility of conviction: heterochromatin as both a repressor and an activator of transcription. Genetica 109:19–24PubMedCrossRefGoogle Scholar
  24. Eissenberg JC, Elgin SCR (2000) The HPI protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210PubMedCrossRefGoogle Scholar
  25. Eissenberg JC (2001) Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 275:19–29PubMedCrossRefGoogle Scholar
  26. Ekwall K, Javerzat J-P, Lorentz A, Schmidt H, Cranston G, Allshire RC (1995) The chromodomain protein Swi6: A key component at fission yeast centromeres. Science 269:1429–1431PubMedCrossRefGoogle Scholar
  27. Enomoto S, Berman J (1998) Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12:219–232PubMedCrossRefGoogle Scholar
  28. Fanti L, Giovinazzo G, Berloco M, Pimpinelli A (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2:527–538PubMedCrossRefGoogle Scholar
  29. Festenstein R, Sharghi-Namini S, Fox M, Roderick K, Tolaini M, Norton T, Saveliev A, Kioussis D, Singh P (1999) Heterochromatin protein 1 modifies mammalian PEV in a dose-and chromosomal-context-dependent manner. Nat Genet 23:457–461PubMedCrossRefGoogle Scholar
  30. Firestein R, Xiangmin C, Huie P, Cleary ML (2000) Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol 20:4900–4909PubMedCrossRefGoogle Scholar
  31. Fox CA, Ehrenhofer-MuRray AE, Lao S, Rine J (1997) The origin recognition complex, SIR1,and the S phase requirement for silencing. Science 276:1547–1551PubMedCrossRefGoogle Scholar
  32. Franke WW, Scheer U, Krohne G, Jarash E (1981) The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol 91:39–50CrossRefGoogle Scholar
  33. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher III FJ (1996) KAP-l, a novel corepressor for the highly conserved KRAB repression domain. Gene Dev 10:2067–2078PubMedCrossRefGoogle Scholar
  34. Gibbons RJ, Picketts DJ, Villard L, Higgs DR (1995) Mutations In a Putative Global Transcriptional Regulator Cause X-linked Mental Retardation with α-thalassemia (ATR-X syndrome) Cell 80:837–845PubMedCrossRefGoogle Scholar
  35. Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM (1996) The clustering of telomeres and colocalization with Rap1,Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134:1349–1363PubMedCrossRefGoogle Scholar
  36. Hancock R, Boulikas T (1982) Functional organization in the nucleus. Int Rev Cytol 79:165–214PubMedCrossRefGoogle Scholar
  37. Hearn MG, Hedrick A, Grigliatti TA, Wakimoto BT (1991) The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 128:785–797PubMedGoogle Scholar
  38. Hecht A, Loroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: molecular model for the formation of heterochromatin in yeast. Cell 80:583–592PubMedCrossRefGoogle Scholar
  39. Heitz E (1928) Das Heterochromatin der Moose. I Jahrb, Wissensch Bot 69:762–818Google Scholar
  40. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazettjones DP, Allis CD (1997) Mitosis specific phosphorylation of histone H3 initiates primarily within percentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360PubMedCrossRefGoogle Scholar
  41. Huang DW, Fanti L, Pak DTS, Botchan MR, Pimpinelli S, Kellum R (1998) Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J Cell Biol 142:307–318PubMedCrossRefGoogle Scholar
  42. Hwang K-K, Eissenberg JC, Worman HJ (2001) Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers Proc Natl Acad Sci USA 98:11423–11427PubMedCrossRefGoogle Scholar
  43. Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJS (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet 19:192–195PubMedCrossRefGoogle Scholar
  44. Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBOJ 20:5232–5241CrossRefGoogle Scholar
  45. James TC Elgin SCR (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872PubMedGoogle Scholar
  46. Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J Cell Sci 108:1419–1431PubMedGoogle Scholar
  47. Kirschmann DA, Lininger RA, Gardner LMG, Seftor EA, Odero VA, Ainsztein AM, Earnshaw WC, Wallrath LL, Hendrix MJC (2000) Down-regulation of HP1Hsa expression is associated with the metastatic phenotype in breast cancer. Cancer Res 60:3359–3363PubMedGoogle Scholar
  48. Kit S (1961) Equilibrium sedimentation in density gradients of DNApreparations for animal tissues. J Mol Biol 3:711–716PubMedCrossRefGoogle Scholar
  49. Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SMM (2000) Identification of heterochromatin protein (HPl) as a phosphorylation target by Pim-I kinase and the effect of phosphorylation on the transcriptional repression function of HP1. FEBS Lettr 467:17–21CrossRefGoogle Scholar
  50. Kourmouli N, Theodoropoulos PA, DialynaS G, Bakou A, Politou AS Google Scholar
  51. Cowell IG, Singh PB, Georgatos SD (2000) Dynamic associations of heterochromatin protein 1 with the nuclear envelope. EMBOJ 19:6558–6568CrossRefGoogle Scholar
  52. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3lysine 9 creates a binding site for HPI proteins. Nature 410:116–120PubMedCrossRefGoogle Scholar
  53. Lechner MS, Begg GE, Speicher DW, Rauscher FJ (2000) Molecular determinants for targeting heterochromatin protein l-mediated gene silencing: Direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 20:6449–6465PubMedCrossRefGoogle Scholar
  54. Le Douarin B, Nielsen A, Garnier J-M, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIFlα and TIF1β in the epigenetic control of transcription by nuclear receptors. EMBOJ 15:6701–6715Google Scholar
  55. Lee JY, Orr-Weaver TL (2001) The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17:753–777PubMedCrossRefGoogle Scholar
  56. Lehming N, Le Saux A, Schuller J, Ptashne M (1998) Chromatin components as part of a putative transcriptional repressing complex. Proc Natl Acad Sci USA 95:7322–7326PubMedCrossRefGoogle Scholar
  57. Lima De Faria A, Jaworska H (1968) Late DNA synthesis in heterochromatin. Nature 217:138–142CrossRefGoogle Scholar
  58. Linder B, Gerlach N, Jackle H (2001) The Drosophila homolog of the human AF10 is an HPI-interacting suppressor of position effect variegation. EMBO Rep 2:211–216PubMedCrossRefGoogle Scholar
  59. Locke I, Kotarski MA, Tartof KD (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120:181–198PubMedGoogle Scholar
  60. Lorentz A, Ostermann K, Fleck O, Schmidt H (1994) Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene 143:139–143PubMedCrossRefGoogle Scholar
  61. Matsuda E, Agata Y, Sagai M, Katakai T, Gonda H, Shimizu A (2001) Targeting of Kruppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. J Biol Chem 276:14222–14229PubMedCrossRefGoogle Scholar
  62. Minc E, Allory Y, Worman HI, Courvalin J-C, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234PubMedCrossRefGoogle Scholar
  63. Moazed O (2001) Common themes in mechanisms of gene silencing. Mol Cell 8:489–498PubMedCrossRefGoogle Scholar
  64. Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334CrossRefGoogle Scholar
  65. Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4:529–540PubMedCrossRefGoogle Scholar
  66. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SIS (2001a) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113PubMedCrossRefGoogle Scholar
  67. Nakayama I, Allshire RC, Klar AJS, Grewal SIS (2001b) A role for DNA polymerase a in epigenetic control of transcriptional silencing in fission yeast. EMBOJ 11:2857–2866CrossRefGoogle Scholar
  68. Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Lossox R (1999) Interaction with members of the heterochromatin protein 1 (HPl) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBOJ 18:6385–6395CrossRefGoogle Scholar
  69. Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P Google Scholar
  70. Losson R (2001a) Heterochromatin formation in mammalian cells: Interaction between histones and HPI proteins. Mol Cell 7:729–739PubMedCrossRefGoogle Scholar
  71. Nielsen SI, Schneider R, Bauer UM, Bannister AI, Morrison A, O’Carroll D Google Scholar
  72. Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (2001b) Rb targets histone H3 methylation and HPI to promoters. Nature 412:561–565PubMedCrossRefGoogle Scholar
  73. Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SIS, Watanabe Y (2001) Recruitment of cohesin to heterochromatic regions by Swi6/HP 1 in fission yeast 4:89–93Google Scholar
  74. Pak DTS, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr I, Romanowski P, Botchan M (1997) Association of the origin recognition complex with heterochromatin and HPI in higher eukaryotes. Cell 91:311–323PubMedCrossRefGoogle Scholar
  75. Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358PubMedCrossRefGoogle Scholar
  76. Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791PubMedGoogle Scholar
  77. Polioudaki H, KoUrmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep 2:920–925PubMedCrossRefGoogle Scholar
  78. Powers JA, Eissenberg IC (1993) Overlapping domains of the heterochromatin-associated protein HP1 mediate nuclear localization and heterochromatin binding. J Cell Biol 120:291–299PubMedCrossRefGoogle Scholar
  79. Rae PM (1970) Chromosomal distribution of rapidly reannealing DNA in Drosophila melanogaster. Proc Natl Acad Sci USA 67:1018–1025PubMedCrossRefGoogle Scholar
  80. Reuter G, Giarre M, Farah J, Gausz I, Spierer A, Spierer P (1990) Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344:219–233PubMedCrossRefGoogle Scholar
  81. Ris H, Korenberg RD (1979) Chromosome structure and levels of chromosome organization. In The Structure and Replication of Genetic Material. Ed. DM Prescott and L Goldstein, pp 268–361. New York: Academic PressGoogle Scholar
  82. Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WI, Rauscher III FJ (1999) KAP-l corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-Zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 19:4366–4378PubMedGoogle Scholar
  83. Seeler J-S, Dejean A (1999) The PML nuclear bodies: actors or extras? Curr Opin Genet Dev 9:362–367PubMedCrossRefGoogle Scholar
  84. Seeler IS, Marchio A, Sitterlin D, Transy C, Deejan A (1998) Interaction ofSPI00 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci USA 95:7316–7321PubMedCrossRefGoogle Scholar
  85. Seum C, Delattre M, Spierer A, Spierer P (2001) Ectopic HPI promotes chromosome loops and variegated silencing in Drosophila. EMBO J 20:812–818PubMedCrossRefGoogle Scholar
  86. Shareef MM, King C, Damaj M, Badagu R-K, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12:1671–1685PubMedGoogle Scholar
  87. Sinclair DAR, Mottus RC, Grigliatti TA (1983) Genes which suppress positioneffect variegation in Drosophila melanogaster are clustered. Mol Gen Genet 191:326–333CrossRefGoogle Scholar
  88. Smothers IF, Henikoff S (2000) The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol 10:27–30PubMedCrossRefGoogle Scholar
  89. Smothers IF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21:2555–2569PubMedCrossRefGoogle Scholar
  90. Song K, Jung Y, Jung D, Lee I (2001) Human Ku70interacts with heterochromatin protein 1α J Biol Chem 276:8321–8327PubMedCrossRefGoogle Scholar
  91. Taddei A, Roche D, Sibarita J-B, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166PubMedCrossRefGoogle Scholar
  92. Turner BM, Birley AI (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384PubMedCrossRefGoogle Scholar
  93. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104PubMedCrossRefGoogle Scholar
  94. Wallrath LL, Elgin SCR (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9:1263–1277PubMedCrossRefGoogle Scholar
  95. Wang G, Ma A, Chow C-M, Horsley D, Brown NR, Cowell IG, Singh PB (2000) Conservation of heterochromatin protein 1 function. Mol Cell Biol 20:6970–6983PubMedCrossRefGoogle Scholar
  96. Wustmann G, Szidonya I, Taubert H, Reuter G (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet 217:520–527PubMedCrossRefGoogle Scholar
  97. Yamada T, Fukuda R, Himeno M, Sugimoto K (1999) Functional domain structure of human heterochromatin protein HP1Hsα, involvement of internal DNA-binding and C-terminal self-association domains in the formation of discrete dots in inter-phase nuclei. J Biochem 125:832–837PubMedCrossRefGoogle Scholar
  98. Ye Q, Worman HI (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HPl. J Biol Chem 271:14653–14656PubMedCrossRefGoogle Scholar
  99. Zhao T, Heyduk T, Allis CD, Eissenberg IC (2000) Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J Biol Chem 275:28332–28338PubMedGoogle Scholar
  100. Zhao T, Heyduk T, Eissenberg IC (2001) Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J Biol Chem 276:9512–9518PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations