Skip to main content

The NuRD Complex: Linking Histone Modification to Nucleosome Remodeling

  • Chapter
Protein Complexes that Modify Chromatin

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

ATP-dependent nucleosome remodeling and core histone tail modifications play important roles in chromatin function. Purification and characterization of the NuRD/Mi-2 complex, which possesses both nucleosome remodeling and histone deacetylase activities, suggests that ATP-dependent nucleosome remodeling and histone tail modification can be coupled. Recent studies indicate that NuRD is an integral part of the MeCPl complex, suggesting that nucleosome remodeling and histone deacetylation play important roles in methylated DNA silencing. Studies in Caenorhabditis elegans have revealed important functions of the NuRD complex in embryonic patterning and Ras signaling. Accumulating evidence indicates that NuRD may regulate transcription of specific genes by interacting with specific transcriptional factors. In addition, it may also participate in genome-wide transcriptional regulation through an association with histone tails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahringer J (2000) NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 16:351–6

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNAmethylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression-belts, braces, and chromatin. Cell 99:451–4

    Article  PubMed  CAS  Google Scholar 

  • Boyer LA, Logie C, Bonte E, Becker PB, Wade PA, Wolffe AP, Wu C, Imbalzano AN, Peterson CL (2000) Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J Biol Chem 275:18864–70

    Article  PubMed  CAS  Google Scholar 

  • Brehm A, Langst G, Kehle J, Clapier CR, Imhof A, Eberharter A, Muller J, Becker PB (2000) dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBOJ 19:4332–41

    Article  CAS  Google Scholar 

  • Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1999) The E7oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBOJ 18:2449–58

    Article  CAS  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–51

    Article  PubMed  CAS  Google Scholar 

  • Ch’ng Q, Kenyon C (1999) egl-27 generates anteroposterior patterns of cell fusion in C. elegans by regulating Hox gene expression and Hox protein function. Development 126:3303–12

    CAS  Google Scholar 

  • Chen Z, Han M (2001) Role of C. elegans lin-40 MTAin vulval fate specification and morphogenesis. Development 128:4911–21

    PubMed  CAS  Google Scholar 

  • Cote J, Quinn J, Workman JL, Peterson CL (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60

    Article  PubMed  CAS  Google Scholar 

  • Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    Article  PubMed  CAS  Google Scholar 

  • Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196:1–7

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Cao R, Kia L, Erdjument-Bromage H, Tempst P, Zhang Y (2002) Identification and functional characterization of the p66/p68 components of the MeCPl complex. Mol Cell Biol 22:536–46

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Zhang Y (2001) The MeCPl complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15:827–32

    PubMed  CAS  Google Scholar 

  • Ferguson EL, Horvitz HR (1989) The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics 123:109–21

    PubMed  CAS  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRTand N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–101

    Article  PubMed  CAS  Google Scholar 

  • Guschin D, Wade PA, Kikyo N, Wolffe AP (2000) ATP-Dependent histone octamer mobilization and histone deacetylation mediated by the Mi-2 chromatin remodeling complex. Biochemistry 39:5238–45

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL (1998) A role for histone deacetylase activity in HDACI-mediated transcriptional repression. Proc Natl Acad Sci USA 95:3519–24

    Article  PubMed  CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBOJ 7:1395–402

    CAS  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–47

    PubMed  CAS  Google Scholar 

  • Hendrich B, Bird A (2000) Mammalian methyltransferases and methyl-CpG-binding domains: proteins involved in DNAmethylation. Curr Top Microbiol Immunol 249:55–74

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–23

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Baylin SB (2000) Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol ImmunoI 249:35–54

    Article  CAS  Google Scholar 

  • Herman MA, Ch’ng Q, Hettenbach SM, Ratliff TM, Kenyon C, Herman RK (1999) EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. Development 126:1055–64

    PubMed  CAS  Google Scholar 

  • Iguchi H, Imura G, Toh Y, Ogata Y (2000) Expression of MTAl, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. Int J Oncol 16:1211–4

    PubMed  CAS  Google Scholar 

  • Jones PA (1999) The DNAmethylation paradox. Trends Genet 15:34–7

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998) Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12:797–805

    Article  PubMed  CAS  Google Scholar 

  • Kehle J, Beuchle D, Treuheit S, Christen B, Kennison JA, Bienz M, Muller J (1998) dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282:1897–900

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, Winandy S, Viel A, Sawyer A, Ikeda T, Kingston R, Georgopoulos K (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10:345–55

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13:2339–52

    Article  PubMed  CAS  Google Scholar 

  • Knoepfler PS, Eisenman RN (1999) Sin meets NuRD and other tails of repression. Cell 99:447–50

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–94

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12:627–39

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SWl/SNF complex. Nature 370:477–81

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Horvitz HR (1998) lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95:981–91

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of pS3 modulates its effect on cell growth and apoptosis. Nature 408:377–81

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci USA 95:132–7

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar A, Wang RA, Mishra SK, Adam L, Bagheri-Yarmand R, Mandal M, Vadlamudi RK, Kumar R (2001) Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 3:30–7

    Article  PubMed  CAS  Google Scholar 

  • Murawsky CM, Brehm A, Badenhorst P, Lowe N, Becker PB, Travers AA (2001) Tramtrack69 interacts with the dMi-2 subunit of the Drosophila NuRD chromatin remodelling complex. EMBORep 2:1089–94

    Article  CAS  Google Scholar 

  • Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–92

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61

    PubMed  CAS  Google Scholar 

  • Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16:479–89

    Article  PubMed  CAS  Google Scholar 

  • Ohki I, Shimotake N, Fujita N, Jee J, Ikegami T, Nakao M, Shirakawa M (2001) Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA.Cell 105:487–97

    Article  PubMed  CAS  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94

    Article  PubMed  CAS  Google Scholar 

  • Pazin MJ, Kadonaga JT (1997) SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88:737–40

    Article  PubMed  CAS  Google Scholar 

  • Qian YW, Lee EY (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270:25507–13

    Article  PubMed  CAS  Google Scholar 

  • Qian YW, Wang YC, Hollingsworth RE Jr, Jones D, Ling N, Lee EY (1993) A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 364:648–52

    Article  PubMed  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  PubMed  CAS  Google Scholar 

  • Ruggieri R, Tanaka K, Nakafuku M, Kaziro Y, Toh-e A, Matsumoto K (1989) MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:8778–82

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Yukiue H, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y (2002) Expression of the MTA! mRNA in advanced lung cancer. Lung Cancer 35:149–54

    Article  PubMed  Google Scholar 

  • Schultz DC, Friedman JR, Rauscher FJ, 3rd (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-l form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15:428–43

    Article  PubMed  CAS  Google Scholar 

  • Seelig HP, Moosbrugger I, Ehrfeld H, Fink T, Renz M, Genth E (1995) The major dermatomyositis-specific Mi-2 auto antigen is a presumed helicase involved in transcriptional activation. Arthritis Rheum 38:1389–99

    Article  PubMed  CAS  Google Scholar 

  • Seelig HP, Renz M, Targoff IN, Ge Q, Frank MB (1996) Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen. Arthritis Rheum 39:1769–71

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Mello C (1998) A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev 12:943–55

    Article  PubMed  CAS  Google Scholar 

  • Solari F, Ahringer J (2000) NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans. Curr Biol 10:223–6

    Article  PubMed  CAS  Google Scholar 

  • Solari F, Bateman A, Ahringer J (1999) The Caenorhabditis elegans genes egl-27 and egr-l are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126:2483–94

    PubMed  CAS  Google Scholar 

  • Sternberg PW, Han M (1998) Genetics of RASsignaling in C. elegans. Trends Genet 14:466–72

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu KI, Yamazaki T, Ishikawa F (2000) MBD2-MBD3complex binds to hernimethylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells 5:677–88

    Article  PubMed  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) Amammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–11

    Article  PubMed  CAS  Google Scholar 

  • Toh Y, Kuwano H, Mori M, Nicolson GL, Sugimachi K (1999) Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. Br J Cancer 79:1723–6

    Article  PubMed  CAS  Google Scholar 

  • Toh Y, Oki E, Oda S, Tokunaga E, Ohno S, Maehara Y, Nicolson GL, Sugimachi K (1997) Overexpression of the MTAI gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer 74:459–63

    Article  PubMed  CAS  Google Scholar 

  • Toh Y, Pencil SD, Nicolson GL (1994) A novel candidate metastasis-associated gene, mtal, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem 269:22958–63

    PubMed  CAS  Google Scholar 

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–21

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT (1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol Cell Biol 16:6149–59

    PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8:96–108

    Article  PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, Gaber RF (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 11:6317–27

    PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatinremodeling complexes. Mol Cell Biol 20:1899–910

    Article  PubMed  CAS  Google Scholar 

  • Van Holde KE (1988) Histone modifications. In Chromatin,Springerseries in molecular biology (ed. A. Rich), pp.111–148. Springer, NewYork

    Google Scholar 

  • Von Zelewsky T, Palladino F, Brunschwig K, Tobler H, Hajnal A, Muller F (2000) The C. elegans Mi-2 chromatin-remodelling proteins function in vulval cell fate determination. Development 127:5277–84

    Google Scholar 

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNAmethylation to chromatin remodelling and histone deacetylation. Nat Genet 23:62–6

    PubMed  CAS  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolffe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8:843–6

    Article  PubMed  CAS  Google Scholar 

  • Wang HB, Zhang Y (2001) Mi2, an auto-antigen for dermatomyositis, is an ATPdependent nucleosome remodeling factor. Nucleic Acids Res 29:2517–21

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Liu L, Berger SL (1998) Critical residues for histone acetylation by GenS, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev 12:640–53

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (2000) Transcriptional control: imprinting insulation. Curr Biol 10:R463–5

    Article  PubMed  CAS  Google Scholar 

  • Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci USA 94:11472–7

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Grunstein M (2000) 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25:619–23

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Zhang Y (2001) Sp1 and ETS family transcription factors regulate the mouse Mta2 gene expression. Gene 268:77–85

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD,a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–61

    Article  PubMed  CAS  Google Scholar 

  • Yang WM, Inouye C, Zeng Y, Bearss D, Seta E (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 93:12845–50

    Article  PubMed  CAS  Google Scholar 

  • Zegerman P, Canas B, Pappin D, Kouzarides T (2002) Histone H3lysine 4 methylation disrupts the binding of the nucleosome remodelling and deacetylase (NuRD) repressor complex. J Biol Chem 15:15

    Google Scholar 

  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–64

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Leroy G, Seelig HP, Lane WS, Reinberg D (1998) The dermatomyositisspecific auto antigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:79–89

    Article  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNAmethylation. Genes Dev 13:1924–35

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, Q., Zhang, Y. (2003). The NuRD Complex: Linking Histone Modification to Nucleosome Remodeling. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics