Skip to main content

A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations

  • Conference paper
Computational Electromagnetics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 28))

Summary

The time harmonic Maxwell’s equations for a lossless medium are neither elliptic or definite. Hence the analysis of numerical schemes for these equations presents some unusual difficulties. In this paper we give a simple proof, based on the use of duality, for the convergence of edge finite element methods applied to the cavity problem for Maxwell’s equations. The cavity is assumed to be a general Lipschitz polyhedron, and the mesh is assumed to be regular but not quasi-uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Mathematics of Computations, 68 (1999), pp. 607–631.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21 (1998), pp. 823–864.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Arnold, R. Falk, and R. Winthur, Multigrid in H(div) and H (curl), Numerische Mathematik, 85 (2000), pp. 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Boffi, Fortin operators and discrete compactness for edge elements, Numer. Math., 87 (2000), pp. 229–246.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Boffi —, A note on the de Rham complex and a discrete compactness property, Applied Mathematics Letters, 14 (2001), pp. 33–38.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Boffi and L. Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operators. Preprint.

    Google Scholar 

  7. S. Caorsi, P. Fernandes, and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM. J. Numer. Anal., 38 (2000), pp. 580–607.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 4 of Studies In Mathematics and It’s Applications, Elsevier North-Holland, New York, 1978.

    Google Scholar 

  9. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, no. 93 in Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1998.

    Google Scholar 

  10. M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Meth. Appl. Sci., 12 (1990), pp. 365–368.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Costabel and M. Dauge, Maxwell and Lamé eigenvalues on polyhedra, Mathematical Methods in the Applied Sciences, 22 (1999), pp. 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Dauge, M. Costabel, and D. Martin, Numerical investigation of a boundary penalization method for Maxwell equations. Report available at http://www.maths.univ-rennesl.fr/~dauge/, 1999.

  13. _M. Dauge, M. Costabel, and D. Martin —, Weighted regularisation of Maxwell equations in polyhedral domains. Report available at http://www.maths.univ-rennesl.fr/~dauge/, 2001.

  14. L. Demkowicz and P. Monk, Discrete compactness and the approximation of Maxwell’s equations in3, Math. Comp., 70 (2001), pp. 507–523.

    MathSciNet  MATH  Google Scholar 

  15. L. Demkowicz, P. Monk, and L. Vardapetyan, de Rham diagram for hp finite element spaces, Comput. Math. Appl., 39 (2000), pp. 29–38.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Demkowicz and L. Vardapetyan, Modelling electromagnetic absorbtion/scattering problems using hp-adaptive finite elements, Compu. Methods Appl. Mech. Engrg., 152 (1998), pp. 103–124.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Descloux, N. Nassif, and J. Rappaz, On spectral approximation. I. The problem, of convergence, RAIRO Anal. Númer., 12 (1978), pp. 97–112.

    MathSciNet  MATH  Google Scholar 

  18. V. Girault, Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in3, Math. Comp., 51 (1988), pp. 53-58.

    MathSciNet  Google Scholar 

  19. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, vol. 749 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1979.

    Book  MATH  Google Scholar 

  20. J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite Maxwell equations. To appear in Math. Comp.

    Google Scholar 

  21. F. Kikuchi, On a discrete compactness property for the Nedelec finite elements, J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math, 36 (1989), pp. 479–490.

    MathSciNet  MATH  Google Scholar 

  22. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math., 63 (1992), pp. 243–261.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. NÉdÉlec, Mixed finite elements in3, Numer. Math., 35 (1980), pp. 315–341.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Nédélec —, A new family of mixed finite elements in3, Numer. Math., 50 (1986), pp. 57–81.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), pp. 959–962.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Schatz and J. Wang, Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Mathematics of Computation, 65 (1996), p. 19.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Vardapetyan and L. Demkowicz, hp-Adaptive finite elements in electromagnetics, Computers Methods in Applied Mechanics and Engineering, 169 (1999), pp. 331–344.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Weber, A local compactness theorem for Maxwell’s equations, Math. Meth. in the Appl. Sci., 2 (1980), pp. 12–25.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monk, P. (2003). A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds) Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55745-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55745-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44392-6

  • Online ISBN: 978-3-642-55745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics