Skip to main content

The Time-Harmonic Eddy-Current Problem in General Domains: Solvability via Scalar Potentials

  • Conference paper
Computational Electromagnetics

Summary

The eddy-current problem for the time-harmonic Maxwell equations in domains of general topology is solved by introducing a scalar “potential” for the magnetic field in the insulator part of the domain. Indeed, since in general the insulator Ω I is multiply-connected, the magnetic field differs from the gradient of a potential by a harmonic field. We rewrite the problem in a two-domain formulation, in term of a scalar magnetic potential and a harmonic field in Ω I . Then the finite element numerical approximation based on this two-domain formulation is presented, using edge elements in the conductor and nodal elements in the insulator, and an optimal error estimate is proved. An iteration-by-sub domain procedure for the solution of the problem is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso Rodríguez, A., Fernandes, P. & Valli, A. (2001) Weak and strong formulations for the time-harmonic eddy-current problem in general domains, preprint UTM 603, Department of Mathematics, University of Trento, submitted to European J. Appl. Math.

    Google Scholar 

  2. Alonso, A. & Valli, A. (1996) Some remarks on the characterization of the space of tangential traces of H (rot; Ω) and the construction of an extension operator. Manuscr. Math. 89, 159–178

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso, A. & Valli, A. (1997) A domain decomposition approach for heterogeneous time-harmonic Maxwell equations. Comput. Meth. Appl. Mech. Engrg. 143, 97–112

    Article  MathSciNet  MATH  Google Scholar 

  4. Alonso, A. & Valli, A. (1999) An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell Equations. Math. Comput. 68, 607–631

    Article  MathSciNet  MATH  Google Scholar 

  5. Amrouche, C., Bernardi, C., Dauge, M. & Girault, V. (1998) Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864

    Article  MathSciNet  MATH  Google Scholar 

  6. Bermúdez, A., Rodríguez, R. & Salgado, P. (2001) A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. Preprint

    Google Scholar 

  7. Bossavit, A. (1993) Électromagnétisme, en Vue de la Modélisation. Springer-Verlag, Paris

    MATH  Google Scholar 

  8. Bossavit, A. (1999) ”Hybrid” electric-magnetic methods in eddy-current problems. Comput. Meth. Appl. Mech. Engrg. 178, 383–391

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffa, A. (2001) Hodge decomposition on the boundary of non-smooth domains: the multi-connected case. Math. Models Meth. Appl. Sci. 11, 1491–1504

    Article  MathSciNet  MATH  Google Scholar 

  10. Buffa, A. & Ciarlet, P. Jr. (2001) On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30

    Article  MathSciNet  MATH  Google Scholar 

  11. Buffa, A. & Ciarlet, P. Jr. (2001) On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24, 31–48

    Article  MathSciNet  MATH  Google Scholar 

  12. Cessenat, M. (1996) Mathematical Methods in Electromagnetism: Linear Theory and Applications. World Scientific Pub. Co., Singapore

    MATH  Google Scholar 

  13. Dautray, R. & Lions, J.-L. (1992) Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I, Springer-Verlag, Berlin

    Google Scholar 

  14. Fernandes, P. & Gilardi, G. (1997) Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Meth. Appl. Sci. 7, 957–991

    Article  MathSciNet  MATH  Google Scholar 

  15. Foias, C. & Temam, R. (1978) Remarques sur les équations de Navier-Stokes stationnaires et les phénomànes successifs de bifurcations. Ann. Scuola Norm. Sup. Pisa 5(IV), 29–63

    MathSciNet  MATH  Google Scholar 

  16. Girault, V. & Raviart, P.-A. (1986) Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. Springer-Verlag, Berlin

    Google Scholar 

  17. Kress, R. (1971) Ein kombiniertes Dirichlet-Neumannsches Randwertproblem bei harmonischen Vektorfeldern. Arch. Rational Mech. Anal. 42, 40–49

    Article  MathSciNet  MATH  Google Scholar 

  18. Leonard, P. J. & D. Rodger (1989) A new method for cutting the magnetic scalar potential in multiply connected eddy currents problems. IEEE Trans. Magnetics 25, 4132–4134

    Article  Google Scholar 

  19. Leonard, P.J. & D. Rodger (1990) Comparison of methods for dealing with multiply connected regions in 3D eddy current problems using the A-ψ method. COMPEL 9Supplement A, 55–57

    Google Scholar 

  20. Nédélec, J.-C. (1980) Mixed finite elements in ℝ3. Numer. Math. 35, 315–341

    Article  MathSciNet  MATH  Google Scholar 

  21. Nédélec, J.-C. (1986) A new family of mixed finite elements in ℝ3. Numer. Math. 50, 57–81

    Article  MathSciNet  MATH  Google Scholar 

  22. Picard, R. (1979) Zur Theorie der harmonischen Differentialformen. Manuscr. Math. 27, 31–45

    Article  MathSciNet  MATH  Google Scholar 

  23. Picard, R. (1982) On the boundary value problems of electro-and magnetostatics. Proc. Royal Soc. Edinburgh 92 A, 165–174

    Article  MathSciNet  Google Scholar 

  24. Saranen, J. (1982) On generalized harmonic fields in domains with anisotropic nonhomogeneous media. J. Math. Anal. Appl. 88, 104–115; Erratum: J. Math. Anal. Appl. 91 (1983) 300

    Article  MathSciNet  MATH  Google Scholar 

  25. Saranen, J. (1983) On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media. J. Math. Anal. Appl. 91, 254–275

    Article  MathSciNet  MATH  Google Scholar 

  26. Valli, A. (1996) Orthogonal decompositions of (L 2(Ω))3. preprint UTM 493, Department of Mathematics, University of Trento

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez, A.A., Fernandes, P., Valli, A. (2003). The Time-Harmonic Eddy-Current Problem in General Domains: Solvability via Scalar Potentials. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds) Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55745-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55745-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44392-6

  • Online ISBN: 978-3-642-55745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics