Skip to main content

Exploitation of Macrophage Clearance Functions In Vivo

  • Chapter
Book cover The Macrophage as Therapeutic Target

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

Abstract

The propensity of macrophages for the phagocytic clearance of colloidal particles provides a rational approach to macrophage-specific targeting and drug delivery. Furthermore, by precision engineering, colloidal drug carriers can be targeted to selective population of macrophages in the body as well as intracellular locations. These approaches have led to the development of a number of regulatory-approved particulate formulations for delivery of therapeutic and diagnostic agents to macrophages. This article will briefly discuss selected approaches and highlight barriers in in vivo macrophage-specific targeting with colloidal carriers via intravenous, subcutaneous and oral routes of administration, and it explores avenues for selective modification of macrophage cellular activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APC:

antigen-presenting cell

EO:

ethylene oxide

IES:

interendothelial cell slits

MHC:

major histocompatibility complex

PO:

propylene oxide

TAT:

trans-activating transcriptional activator

References

  • Agrawal AK, Gupta CM (2000) Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev 41:135–146

    Article  PubMed  CAS  Google Scholar 

  • Alves-Rosa F, Stanganelli C, Cabrera J, van Rooijen N, Palermo MS and Isturzi MA (2000) Treatment with liposome-encapsulated clodronate as a new strategic approach in the management of immune thrombocytopenic purpura in a mouse model. Blood 96: 2834–2840

    PubMed  CAS  Google Scholar 

  • Alving CR (1988) Macrophages as targets for delivery of liposome-encapsulated antimicrobial agents. Adv Drug Deliv Rev 2:107–128

    Article  Google Scholar 

  • Barrera P, van Lent PLEM, van Bloois L, van Rooijen N, Malefijit MCD, van de Putte LBA, Storm G, van den Berg WB (2000) Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheumat 43:1951–1959

    Article  PubMed  CAS  Google Scholar 

  • Beauregard KE, Lee KD, Collier RJ, Swanson JA (1997) pH-dependent perforation of macrophage phagosomes by Listeriolysin O from Listeria monocytogenes. J Exp Med 186:1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Donowitz GR (1994) Tissue-directed antibiotics and intracellular parasites: complex interaction of phagocyte, pathogens and drugs. Clin Infect Dis 19:926–930

    Article  PubMed  CAS  Google Scholar 

  • Drummond DC, Zignani M, Leroux JC (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    Article  PubMed  CAS  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    Article  PubMed  CAS  Google Scholar 

  • Ermak TH, Giannasca PJ (1998) Microparticle targeting to M cells. Adv Drug Deliv Rev 34:261–283

    Article  PubMed  CAS  Google Scholar 

  • Finkelman FD, Urbon JF, Beckman MP, Schooley KA, Homes JM, Katona IM (1991) Regulation of murine in vivo IgG and IgE responses by a monoclonal anti-IL-4 receptor antibody. Int Immunol 3:599–607

    Article  PubMed  CAS  Google Scholar 

  • Fling SP, Arp B, Pious D (1994) HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature 368:554–558

    Article  PubMed  CAS  Google Scholar 

  • Gbadamosi JK, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Letters 532:338–344

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (1995) The macrophage. Bioessays 17:977–986

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Lawson L, Rabinowitz S, Crocker PR, Morris L, Perry VH (1992) Antigen markers of macrophage differentiation in murine tissues. Curr Top Microbiol Immunol 181:137

    Google Scholar 

  • Gregoriadis G (1990) Immunological adjuvants: a role for liposomes. Immunol Today 11:89–96

    Article  PubMed  CAS  Google Scholar 

  • Harding CV, Song R (1994) Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol 153:4925–4933

    PubMed  CAS  Google Scholar 

  • Horwitz BA, Shintizky M, Kreutz W, Yatvin MB (1980) pH-sensitive liposomes: possible clinical implications. Science 210:1253–1255

    Article  PubMed  Google Scholar 

  • Howerton DA, Hunter RL, Ziegler HK, Check IJ (1990) Induction of macrophage la expression in vivo by a synthetic block copolymer, L81. J Immunol 144:1578–1584

    PubMed  CAS  Google Scholar 

  • Hunter RL, Bennett B (1984) The adjuvant activity of nonionic block polymer surfactants. II. Antibody formation and inflammation related to the structure of triblock and octablock copolymers. J Immunol 133:3167–3175

    PubMed  CAS  Google Scholar 

  • Jones DH, Corris S, McDonald S, Clegg JCS, Farrar GH (1997) Poly(DL-lactide-co-glycolide) encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15:814–817

    Article  PubMed  CAS  Google Scholar 

  • Kotter MR, Setzu A, Sim FJ, van Rooijen N, Franklin RJM (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. GLIA 35:204–212

    Article  PubMed  CAS  Google Scholar 

  • Kovacsovics-Bankowski M, Rock KL (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243–246

    Article  PubMed  CAS  Google Scholar 

  • Laverman P, Carstens MG, Storm G, Moghimi SM (2001) Recognition and clearance of methoxypoly(ethyleneglycol)2OOO-grafted liposomes by macrophages with enhanced phagocytic capacity. Implications in experimental and clinical oncology. Biochim Biophys Acta 1526:227–229

    Article  PubMed  CAS  Google Scholar 

  • Lee PT, Holt PG, McWilliam AS (2001) Ontogeny of rat pulmonary alveolar macrophage function: evidence for a selective deficiency in IL-10 and nitric oxide production by newborn alveolar macrophages. Cytokine 15:5357

    Article  Google Scholar 

  • Lee KD, Oh YK, Portnoy DA, Swanson JA (1996) Delivery of macromolecules into cytosol using liposome containing hemolysin from Listeria monocytogenes. J Biol Chem 271:7249–7252

    Article  PubMed  CAS  Google Scholar 

  • Linehan SA, Martinez-Pomares L, da Silva RP, Gordon S (2001) Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. Eur J Immunol 31:1857–1866

    Article  PubMed  CAS  Google Scholar 

  • Liu T, van Rooijen N, Tracy DJ (2000) Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain 86:2532

    Article  Google Scholar 

  • Lloyd JB (2000) Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev 41:189–200

    Article  PubMed  CAS  Google Scholar 

  • Marx PA, Compans RW, Gettie A, Staas JK, Gilley RM, Mulligan MJ, Yamshchikov GV, Chen D, Eldridge JH (1993) Protection against vaginal SIV transmission with mi-croencapsulated vaccine. Science 260:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM (2002) Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochim Biophys Acta 1590:131–139

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Bonnemain B (1999) Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography. Adv Drug Deliv Rev 37:295–312

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Gray T (1997) A single dose of intravenously injected poloxamine-coated long-circulating particles triggers macrophage clearance of subsequent doses in rats. Clin Sci 93:371–379

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Hawley AE, Christy NM, Gray T, Ilium L, Davis SS (1994) Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macro-phages of the regional lymph nodes. FEBS Lett 344:25–30

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Hedeman H, Christy NM, Ilium L, Davis SS (1993a) Enhanced hepatic clearance of intravenously administered sterically stabilized microspheres in zymo-san-stimulated rats. J Leukoc Biol 54:513–517

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Hedeman H, Ilium L, Davis SS (1993b) Effect of splenic congestion associated with haemolytic anaemia on filtration of ’spleen-homing’ microspheres. Clin Sci 84:605–609

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Hedeman H, Muir IS, Ilium L, Davis SS (1993c) An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta 1157:233–240

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trend Biotechnol 18:412–420

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Muir IS, Ilium L, Davis SS, Kolb-Bachofen V (1993d) Coating particles with a block copolymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1179:157–165

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Murray JC (1996) Poloxamer-188 revisited: a potentially valuable immune modulator? J Natl Cancer Inst 88:766–768

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Porter CJH, Muir IS, Ilium L, Davis SS (1991) Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 177:861–866

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Patel HM (2002) Modulation of murine Kupffer cell clearance of liposome by diethylstilbestrol. The effect of vesicle surface charge and a role for complement receptor Mac-1 (CDllb/CDl8) of the newly recruited macrophages in liposome recognition. J Control Rel 78:55–65

    Article  CAS  Google Scholar 

  • Moghimi SM, Rajabi-Siahboomi AR (1996) Advanced colloid-based systems for efficient delivery of drugs and diagnostic agents to the lymphatic tissues. Prog Biophys Mol Biol 65:221–249

    Article  PubMed  CAS  Google Scholar 

  • Polfliet MMJ, Goede PH, van Kesteren-Hendrikx EML, van Rooijen N, Dijkstra CD, van der Berg TK (2001) A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol 116:188–195

    Article  PubMed  CAS  Google Scholar 

  • Poznansky M, Juliano RL (1984) Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev 36:277–336

    PubMed  CAS  Google Scholar 

  • Rao M, Alving CR (2000) Delivery of lipids and liposomal proteins to the cytoplasm and golgi of antigen-presenting cells. Adv Drug Deliv Rev 41:171–188

    Article  PubMed  CAS  Google Scholar 

  • Rutherford MS, Witsell A, Schook LB (1993) Mechanisms generating functionally heterogeneous macrophages. Chaos revisited. J Leukoc Biol 53:602–618

    PubMed  CAS  Google Scholar 

  • Simecka JW (1998) Mucosal immunity of the gastrointestinal tract and oral tolerance. Adv Drug Deliv Rev 34:235–259

    Article  PubMed  CAS  Google Scholar 

  • Tilcock C (1995) Imaging tools: liposomal agents for nuclear medicine, computed tomography, magnetic resonance, and ultrasound. In: Philippot JD, Schubar F (eds) Liposomes as Tools in Basic Research and Industry, CRC Press, Boca Raton, FL, pp 225–240

    Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    Article  PubMed  CAS  Google Scholar 

  • van Rooijen N, Sanders A (1997) Elimination, blocking, and activation of macrophages: three of a kind? J Leukoc Biol 62:702–709

    PubMed  Google Scholar 

  • Wu GS, Korsgren O, Zhang JG, Song ZS, van Rooijen N, Tibell A (2000) Pig islet xenograft rejection is markedly delayed in macrophage-depleted mice: a study in streptozotocin diabetic animals. Xenotransplantation 7:214–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moghimi, S.M. (2003). Exploitation of Macrophage Clearance Functions In Vivo. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics