Skip to main content

Dendritic Cells Versus Macrophages as Antigen-Presenting Cells: Common and Unique Features

  • Chapter
The Macrophage as Therapeutic Target

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

  • 452 Accesses

Abstract

Dendritic cells (DC) and macrophages contribute to both the innate and adaptive immune responses. It is becoming clear that DC and macrophages can be derived from common precursors, and that monocytes differentiate into DC under defined experimental conditions. Multiple types of DC and macrophages exist with different functional roles. Both immature DC and macrophages have significant phagocytic ability and are recruited by chemokines and cytokines to inflammatory sites. Upon encountering antigen or inflammatory stimuli, DC and macrophages become activated and responsible for several distinct non-specific and specific immunological functions. Most importantly, different stimuli, i.e. different pathogen-associated molecular patterns trigger different DC outcomes. Thus, the different DC subsets regulate the processing/delivery of antigen and provide a variety of costimulatory surface molecules, soluble cytokines and chemokines. DC are uniquely capable of activating primary immunity. This has driven the use of DC for tumour immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, ML, Pearce, SF, Francisco, LM, Sauter, B, Roy, P, Silver stein, RL and Bhardwaj, N (1998) Immature dendritic cells phagocytose apoptotic cells bas alphavbeta5 and CD36 and cross-present antigens to cytotoxic T lymphocytes. J Exp med. 188: 1359 – 1368

    Article  PubMed  CAS  Google Scholar 

  • Albert, ML, Sauter, B and Bhardwaj, N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 392: 86 – 89

    Article  PubMed  CAS  Google Scholar 

  • Albert, ML, Jegathesan, M and Darnell, RB (2001) Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol. 2: 1010 – 1017.

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulou, L, Holt, AC, Medzhitov, R and Flavell, RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413: 732 – 738.

    Article  PubMed  CAS  Google Scholar 

  • Allavena, P, Piemonti, L, Longoni, D, Bernasconi, S, Stoppacciaro, A, Ruco, L and Mantovani, A (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol. 28: 359 – 369

    Article  PubMed  CAS  Google Scholar 

  • Anderson, KM and Srivastava, PK (2000) Heat, heat shock, heat shock proteins and death: a central link in innate and adaptive immune responses. Immunol Lett. 74: 35 – 39

    Article  PubMed  CAS  Google Scholar 

  • Arnold, D, Faath, S, Rammensee, H and Schild, H (1995) Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med. 182: 885 – 889

    Article  PubMed  CAS  Google Scholar 

  • Arnold-Schild, D, Hanau, D, Spehner, D, Schmid, C, Rammensee, HG, de la Salle, H and Schild, H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol. 162: 3757 – 3760.

    PubMed  CAS  Google Scholar 

  • Ashkar, S, Weber, GF, Panoutsakopoulou, V, Sanchirico, ME, Jansson, M, Zawaideh, S, Rittling, SR, Denhardt, DT, Glimcher, MJ and Cantor, H (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 287: 860 – 864

    Article  PubMed  CAS  Google Scholar 

  • Barratt-Boyes, SM, Zimmer, MI, Harshyne, LA, Meyer, EM, Watkins, SC, Capuano, S, 3rd, Murphey-Corb, M, Falo, LD, Jr. and Donnenberg, AD (2000) Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J Immunol. 164: 2487 – 2495.

    PubMed  CAS  Google Scholar 

  • Basu, S, Binder, RJ, Ramalingam, T and Srivastava, PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 14: 303 – 313.

    Article  PubMed  CAS  Google Scholar 

  • Berard, F, Blanco, P, Davoust, J, Neidhart-Berard, EM, Nouri-Shirazi, M, Taquet, N, Rimoldi, D, Cerottini, JC, Banchereau, J and Palucka, AK (2000) Cross-Priming of Naive CD8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells. J Exp Med. 192: 1535 – 1544

    Article  PubMed  CAS  Google Scholar 

  • Bevan, MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 143: 1283 – 1288

    Article  PubMed  CAS  Google Scholar 

  • Binder, RJ, Han, DK and Srivastava, PK (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol. 1: 151 – 155

    Article  PubMed  CAS  Google Scholar 

  • Bowie, A and O’Neill, LA (2000) The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol. 67: 508 – 514

    PubMed  CAS  Google Scholar 

  • Cao, H, Verge, V, Baron, C, Martinache, C, Leon, A, Scholl, S, Gorin, NC, Salamero, J, Assari, S, Bernard, J and Lopez, M (2000) In vitro generation of dendritic cells from human blood monocytes in experimental conditions compatible for in vivo cell therapy. J Hematother Stem Cell Res. 9: 183 – 194.

    Article  PubMed  CAS  Google Scholar 

  • Caux, C, Vanbervliet, B, Massacrier, C, Dezutter-Dambuyant, C, de Saint-Vis, B, Jacquet, C, Yoneda, K, Imamura, S, Schmitt, D and Banchereau, J (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med. 184: 695 – 706

    Article  PubMed  CAS  Google Scholar 

  • Caux, C, Massacrier, C, Vanbervliet, B, Dubois, B, Durand, I, Cella, M, Lanzavecchia, A and Banchereau, J (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood. 90: 1458 – 1470

    PubMed  CAS  Google Scholar 

  • Cella, M, Facchetti, F, Lanzavecchia, A and Colonna, M (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol. 1: 305 – 310.

    Article  PubMed  CAS  Google Scholar 

  • Chang, CC, Wright, A and Punnonen, J (2000) Monocyte-derived CDla+ and CDla-dendritic cell subsets differ in their cytokine production profiles, susceptibilities to trans-fection, and capacities to direct Th cell differentiation. J Immunol. 165: 3584 – 3591

    PubMed  CAS  Google Scholar 

  • Clark, SC and Kamen, R (1987) The human hematopoietic colony-stimulating factors. Science. 236: 1229 – 1237

    Article  PubMed  CAS  Google Scholar 

  • Dalloul, AH, Patry, C, Salamero, J, Canque, B, Grassi, F and Schmitt, C (1999) Functional and phenotypic analysis of thymic CD34+CDla-progenitor-derived dendritic cells: predominance of CDla+ differentiation pathway. J Immunol. 162: 5821 – 5828

    PubMed  CAS  Google Scholar 

  • Dekker, JW, Budhia, S, Angel, NZ, Cooper, BJ, Clark, GJ, Hart, DN and Kato, M (2002) Identification of an S-adenosylhomocysteine hydrolase-like transcript induced during dendritic cell differentiation. Immunogenetics. 53: 993 – 1001.

    Article  PubMed  CAS  Google Scholar 

  • den Haan, JM, Lehar, SM and Bevan, MJ (2000) CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med. 192: 1685 – 1696.

    Article  Google Scholar 

  • Dietz, AB, Bulur, PA, Knutson, GJ, Matasic, R and Vuk-Pavlovic, S (2000) Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem Biophys Res Commun. 275: 731 – 738

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni, J, Rho, O, Xian, W and Beltran, L (1994) Role of the epidermal growth factor receptor and transforming growth factor alpha in mouse skin carcinogenesis. Prog Clin Biol Res. 387: 113 – 138

    PubMed  CAS  Google Scholar 

  • Dzionek, A, Sohma, Y, Nagafune, J, Cella, M, Colonna, M, Facchetti, F, Gunther, G, Johnston, I, Lanzavecchia, A, Nagasaka, T, Okada, T, Vermi, W, Winkels, G, Yamamoto, T, Zysk, M, Yamaguchi, Y and Schmitz, J (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med. 194: 1823 – 1834.

    Article  PubMed  CAS  Google Scholar 

  • Fadok, VA, Bratton, DL, Konowal, A, Freed, PW, Westcott, JY and Henson, PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 101: 890 – 898

    Article  PubMed  CAS  Google Scholar 

  • Fadok, VA, Bratton, DL, Rose, DM, Pearson, A, Ezekewitz, RA and Henson, PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 405: 85 – 90

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek, TB, Kwon, DS, Torensma, R, van Vliet, SJ, van Duijnhoven, GC, Middel, J, Cornelissen, IL, Nottet, HS, KewalRamani, VN, Littman, DR, Figdor, CG and van Kooyk, Y (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 100: 587 – 597

    Article  PubMed  CAS  Google Scholar 

  • Geissmann, F, Prost, C, Monnet, JP, Dy, M, Brousse, N and Hermine, O (1998) Transforming growth factor betal, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med. 187: 961 – 966

    Article  PubMed  CAS  Google Scholar 

  • Greenstone, HL, Nieland, JD, de Visser, KE, De Bruijn, ML, Kirnbauer, R, Roden, RB, Lowy, DR, Kast, WM and Schiller, JT (1998) Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA. 95: 1800 – 1805

    Article  PubMed  CAS  Google Scholar 

  • Grohmann, U, Belladonna, ML, Bianchi, R, Orabona, C, Ayroldi, E, Fioretti, MC and Puccetti, P (1998) IL-12 acts directly on DC to promote nuclear localization of NF-kap-paB and primes DC for IL-12 production. Immunity. 9: 315 – 323

    Article  PubMed  CAS  Google Scholar 

  • Hart DNJ, Clark, GJ, A., MKP, Kato, M, Vuckovic, S, Lopez, JA and Wykes, M (2002) 7th leucocyte differentiation antigen workshop DC section summary. In: Mason. D (eds) Leucocyte Typing VII. Oxford University Press, Oxford University Press, pp 283 – 293

    Google Scholar 

  • Hart, DNJ, MacDonald, K, Vuckovic, S and Clark, GJ (2001) Phenotypic characterization of dendritic cells. In: M. J. Lotze and A. W. Thompson (eds) Dendritic cells: Biology and Clinical Application. Academic Press, Academic Press, pp 97 – 117

    Google Scholar 

  • Hartmann, G, Weiner, GJ and Krieg, AM (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA. 96: 9305 – 9310

    Article  PubMed  CAS  Google Scholar 

  • Hemmi, H, Takeuchi, O, Kawai, T, Kaisho, T, Sato, S, Sanjo, H, Matsumoto, M, Hoshino, K, Wagner, H, Takeda, K and Akira, S (2000) A Toll-like receptor recognizes bacterial DNA.[In Process Citation]. Nature. 408: 740 – 745

    Article  PubMed  CAS  Google Scholar 

  • Ho, CS, Munster, D, Pyke, CM, Hart, DN and Lopez, JA (2002) Spontaneous generation and survival of blood dendritic cells in mononuclear cell culture without exogenous cytokines. Blood. 99: 2897 – 2904.

    Article  PubMed  CAS  Google Scholar 

  • Hock, BD, Fearnley, DB, Boyce, A, McLellan, AD, Sorg, RV, Summers, KL and Hart, DN (1999) Human dendritic cells express a 95 kDa activation/differentiation antigen defined by CMRF-56. Tissue Antigens. 53: 320 – 334.

    Article  PubMed  CAS  Google Scholar 

  • Huang, FP, Piatt, N, Wykes, M, Major, JR, Powell, TJ, Jenkins, CD and MacPherson, GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to Tcell areas of mesenteric lymph nodes. J Exp Med. 191: 435 – 444

    Article  PubMed  CAS  Google Scholar 

  • Huang, YM, Hussien, Y, Yarilin, D, Xiao, BG, Liu, YJ and Link, H (2001) Interferon-beta induces the development of type 2 dendritic cells. Cytokine. 13: 264 – 271

    Article  PubMed  CAS  Google Scholar 

  • Ishii, T, Udono, H, Yamano, T, Ohta, H, Uenaka, A, Ono, T, Hizuta, A, Tanaka, N, Srivastava, PK and Nakayama, E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol. 162: 1303 – 1309

    PubMed  CAS  Google Scholar 

  • Ito, T, Inaba, M, Inaba, K, Toki, J, Sogo, S, Iguchi, T, Adachi, Y, Yamaguchi, K, Amakawa, R, Valladeau, J, Saeland, S, Fukuhara, S and Ikehara, S (1999) A CDla+/CDllc+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immu-nol. 163: 1409 – 1419

    CAS  Google Scholar 

  • Jaksits S, Kriehuber, E, Charbonnier, AS, Rappersberger, K, Stingl, G and Maurer, D (1999) CD34+ cell-derived CD 14+ precursor cells develop into Langerhans cells in a TGF-beta 1-dependent manner. J Immunol. 163: 4869 – 4877

    PubMed  CAS  Google Scholar 

  • Jeannin, P, Renno, T, Goetsch, L, Miconnet, I, Aubry, JP, Delneste, Y, Herbault, N, Baussant, T, Magistrelli, G, Soulas, C, Romero, P, Cerottini, JC and Bonnefoy, JY (2000) OmpA targets dendritic cells, induces their maturation and delivers antigen into the MHC class I presentation pathway. Nat Immunol. 1: 502 – 509.

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki, N, Antonenko, S, Lau, JY and Liu, YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med. 192: 219 – 226

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki, N, Ho, S, Antonenko, S, Malefyt, RW, Kastelein, RA, Bazan, F and Liu, YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 194: 863 – 869.

    Article  PubMed  CAS  Google Scholar 

  • Kalinski, P, Schuitemaker, JH, Hilkens, CM and Kapsenberg, ML (1998) Prostaglandin E2 induces the final maturation of IL-12-deficient CDla+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resis-tant to further modulation. J Immunol. 161: 2804 – 2809

    PubMed  CAS  Google Scholar 

  • Kato, M, Neil, TK, Fearnley, DB, McLellan, AD, Vuckovic, S and Hart, DN (2000) Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol. 12: 1511 – 1519

    Article  PubMed  CAS  Google Scholar 

  • Kovacsovics-Bankowski, M, Clark, K, Benacerraf, B and Rock, KL (1993) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA. 90: 4942 – 4946

    Article  PubMed  CAS  Google Scholar 

  • Kurts, C, Heath, WR, Carbone, FR, Allison, J, Miller, JF and Kosaka, H (1996) Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med. 184: 923 – 930

    Article  PubMed  CAS  Google Scholar 

  • Langenkamp, A, Messi, M, Lanzavecchia, A and Sallusto, F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol. 1: 311 – 316

    Article  PubMed  CAS  Google Scholar 

  • Le Naour, F, Hohenkirk, L, Grolleau, A, Misek, DE, Lescure, P, Geiger, JD, Hanash, S and Beretta, L (2001) Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J Biol Chem. 276: 17920 – 17931.

    Article  PubMed  Google Scholar 

  • Lenz, LL, Butz, EA and Bevan, MJ (2000) Requirements for bone marrow-derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J Exp Med. 192: 1135 – 1142

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, JL, Prickett, TCR and Hart, DNJ (1989) Human dendritic cells stimulate allogeneic T cells in the absence of interleukin 1. Immunology. 67: 290 – 297

    PubMed  CAS  Google Scholar 

  • Mellor, AL and Munn, DH (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today. 20: 469 – 473

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, D (1989) The molecular control of cell division, differentiation commitment andmaturation in haemopoietic cells. Nature. 339: 27 – 30

    Article  PubMed  CAS  Google Scholar 

  • Mitani, H, Katayama, N, Araki, H, Ohishi, K, Kobayashi, K, Suzuki, H, Nishii, K, Masuya, M, Yasukawa, K, Minami, N and Shiku, H (2000) Activity of interleukin 6 in the differentiation of monocytes to macrophages and dendritic cells. Br J Haematol. 109: 288 – 295

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, DA, Nair, SK and Gilboa, E (1998) Dendritic cell/macrophage precursors capture exogenous antigen for MHC class I presentation by dendritic cells. Eur J Immunol. 28: 1923 – 1933

    Article  PubMed  CAS  Google Scholar 

  • Nestle, FO, Banchereau, J and Hart, D (2001) Dendritic cells: On the move from bench to bedside. Nat Med. 7: 761 – 765

    Article  PubMed  CAS  Google Scholar 

  • Norbury, CC, Hewlett, LJ, Prescott, AR, Shastri, N and Watts, C (1995) Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity. 3: 783 – 791

    Article  PubMed  CAS  Google Scholar 

  • Ohishi, K, Varnum-Finney, B, Serda, RE, Anasetti, C and Bernstein, ID (2001) The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood. 98: 1402 – 1407

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg, S, Pulaski, BA, Clements, VK, Qi, L, Pipeling, MR and Hanyok, LA (1999) Cell-based vaccines for the stimulation of immunity to metastatic cancers. Immunol Rev. 170: 101 – 114

    Article  PubMed  CAS  Google Scholar 

  • Osugi, Y, Vuckovic, S and Hart, DN (2002) Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood. 100: 2858 – 2866

    Article  PubMed  CAS  Google Scholar 

  • Palucka, KA, Taquet, N, Sanchez-Chapuis, F and Gluckman, JC (1998) Dendritic cells as the terminal stage of monocyte differentiation. J Immunol. 160: 4587 – 4595.

    PubMed  CAS  Google Scholar 

  • Piemonti, L, Bernasconi, S, Luini, W, Trobonjaca, Z, Minty, A, Allavena, P and Mantovani, A (1995) IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur.Cytokine.Netw. 6: 245 – 252

    PubMed  CAS  Google Scholar 

  • Poltorak, A, He, X, Smirnova, I, Liu, MY, Huffel, CV, Du, X, Birdwell, D, Alejos, E, Silva, M, Galanos, C, Freudenberg, M, Ricciardi-Castagnoli, P, Layton, B and Beutler, B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 282: 2085 – 2088

    Article  PubMed  CAS  Google Scholar 

  • Randolph, GJ, Beaulieu, S, Lebecque, S, Steinman, RM and Muller, WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science. 282: 479 – 482

    Article  Google Scholar 

  • Randolph, GJ, Inaba, K, Robbiani, DF, Steinman, RM and Muller, WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 11: 753 – 761

    Article  PubMed  CAS  Google Scholar 

  • Randolph, GJ, Sanchez-Schmitz, G, Liebman, RM and Schakel, K (2002) The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med. 196: 517 – 527

    Article  PubMed  CAS  Google Scholar 

  • Robinson, SP, Patterson, S, English, N, Davies, D, Knight, SC and Reid, CD (1999) Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol. 29: 2769 – 2778

    Article  PubMed  CAS  Google Scholar 

  • Rock, KL, Rothstein, L, Gamble, S and Fleischacker, C (1993) Characterization of anti-gen-presenting cells that present exogenous antigens in association with class I MHC molecules. J Immunol. 150: 438 – 446

    PubMed  CAS  Google Scholar 

  • Rock, FL, Hardiman, G, Timans, JC, Kastelein, RA and Bazan, JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci. 95: 588 – 593

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, A, Regnault, A, Kleijmeer, M, Ricciardi-Castagnoli, P and Amigorena, S (1999) Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol. 1: 362 – 368

    Article  PubMed  CAS  Google Scholar 

  • Sallusto, F and Lanzavecchia, A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumour necrosis factor-a. J Exp Med. 179: 1109 – 1118

    Article  PubMed  CAS  Google Scholar 

  • Samali, A and Cotter, TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res. 223: 163 – 170

    Article  PubMed  CAS  Google Scholar 

  • Santini, SM, Lapenta, C, Logozzi, M, Parlato, S, Spada, M, Di Pucchio, T and Belardelli, F (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med. 191: 1777 – 1788.

    Article  PubMed  CAS  Google Scholar 

  • Savill, J, Hogg, N, Ren, Y and Haslett, C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 90: 1513 – 1522

    Article  PubMed  CAS  Google Scholar 

  • Schultz, G, Rotatori, DS and Clark, W (1991) EGF and TGF-alpha in wound healing and repair. J Cell Biochem. 45: 346 – 352

    Article  PubMed  CAS  Google Scholar 

  • Shen, Z, Reznikoff, G, Dranoff, G and Rock, KL (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol. 158: 2723 – 2730

    PubMed  CAS  Google Scholar 

  • Sigal, LJ, Crotty, S, Andino, R and Rock, KL (1999) Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature. 398: 77 – 80

    Article  PubMed  CAS  Google Scholar 

  • Summers, KL, Hock, BD, McKenzie, JL and Hart, DNJ (2000) Further phenotypic characterization of DC subsets in human tonsils. In preparation.

    Google Scholar 

  • Takeuchi, O, Hoshino, K, Kawai, T, Sanjo, H, Takada, H, Ogawa, T, Takeda, K and Akira, S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 11: 443 – 451

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H, Demeure, CE, Rubio, M, Delespesse, G and Sarfati, M (2000) Human monocyte-derived dendritic cells induce naive Tcell differentiation into T helper cell type 2 (Th2) or Thl/Th2 effectors. Role of stimulator/responder ratio. J Exp Med. 192: 405 – 412.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, A, Sures, I, D’Egidio, M, Jallal, B, Powell, TJ, Herbst, R, Dreps, A, Azam, M, Rubinstein, M, Natoli, C and et al. (1994) The secreted tumor-associated antigen 90 K is a potent immune stimulator. J Biol Chem. 269: 18401 – 18407

    PubMed  CAS  Google Scholar 

  • Verdijk, RM, Mutis, T, Esendam, B, Kamp, J, Melief, CJ, Brand, A and Goulmy, E (1999) Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol. 163: 57 – 61

    PubMed  CAS  Google Scholar 

  • Vieira, PL, de Jong, EC, Wierenga, EA, Kapsenberg, ML and Kalinski, P (2000) Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol. 164: 4507 – 4512

    PubMed  CAS  Google Scholar 

  • Visintin, A, Mazzoni, A, Spitzer, JH, Wyllie, DH, Dower, SK and Segal, DM (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol. 166: 249 – 255

    PubMed  CAS  Google Scholar 

  • Voll, RE, Herrmann, M, Roth, EA, Stach, C, Kalden, JR and Girkontaite, I (1997) Immunosuppressive effects of apoptotic cells. Nature. 390: 350 – 351

    Article  PubMed  CAS  Google Scholar 

  • Vuckovic, S, Fearnley, DB, Mannering, SI, Dekker, J, Whyte, LF and Hart, DN (1998) Generation of CMRF-44+ monocyte-derived dendritic cells: insights into phenotype and function. Exp Hematol. 26: 1255 – 1264

    PubMed  CAS  Google Scholar 

  • Yewdell, JW, Norbury, CC and Bennink, JR (1999) Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol. 73: 1 – 77

    Article  PubMed  CAS  Google Scholar 

  • Zhou, LJ and Tedder, TF (1996) CD 14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA. 93: 2588 – 2592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vuckovic, S., Hart, D.N.J. (2003). Dendritic Cells Versus Macrophages as Antigen-Presenting Cells: Common and Unique Features. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics