Skip to main content

Nuclear Receptors as Regulators of Macrophage Homeostasis and Function

  • Chapter
The Macrophage as Therapeutic Target

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 158))

Abstract

Nuclear hormone receptors comprise a superfamily of ligand-dependent transcription factors that regulate diverse aspects of development and homeostasis. Several members of this superfamily play important roles in the regulation of inflammatory responses and lipid homeostasis in macrophages. These include the glucocorticoid receptor, which acts to inhibit inflammatory programs of gene expression in response to natural corticosteroids and synthetic anti-inflammatory agents such as dexamethasone, peroxisome proliferator-activated receptors (PPARs) that regulate fatty acid homeostasis and inflammation in response to endogenous eicosanoids, and liver X receptors (LXRs) that regulate cholesterol efflux in response to endogenous oxysterols. Recent progress in defining the physiological roles of these receptor systems in macrophages and understanding their mechanisms of action suggest that they may be important targets for the development of new classes of pharmaceuticals that will be useful for treating human diseases in which macrophages play critical pathogenic roles, such as atherosclerosis and arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock, I. M., and Barnes, P. J. (1996). Ligand-induced differentiation of glucocorticoid receptor (GR) trans- repression and transactivation. Biochem Soc Trans 24, 267S

    PubMed  CAS  Google Scholar 

  • Almawi, W. Y., Beyhum, H. N., Rahme, A. A., and Rieder, M. J. (1996). Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60, 563–72

    PubMed  CAS  Google Scholar 

  • Babiker, A., Andersson, O., Lund, E., Xiu, R. J., Deeb, S., Reshef, A., Leitersdorf, E., Diczfalusy, U., and Bjorkhem, I. (1997). Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272, 26253–61

    PubMed  CAS  Google Scholar 

  • Barnes, P. J. (1995). Inhaled glucocorticoids for asthma. N Engl J Med 332, 868–75

    PubMed  CAS  Google Scholar 

  • Barnes, P. J., and Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336, 1066–1071

    PubMed  CAS  Google Scholar 

  • Bellamy, R. (2000). Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome- wide screen. Clin Sci (Lond) 98, 245–50

    CAS  Google Scholar 

  • Bendixen, A. C., Shevde, N. K., Dienger, K. M., Willson, T. M., Funk, C. D., and Pike, J. W. (2001). IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Proc Natl Acad Sci U S A 98, 2443–8

    PubMed  CAS  Google Scholar 

  • Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., and Moras, D. (1995). Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382

    PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47

    PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340

    PubMed  CAS  Google Scholar 

  • Brzozowski, A. M., Pike, A. C. W., Dauter, Z., Hubbard, R. E., Bonn, T., Engström, O., Öhman, L., Greene, G. L., Gustafsson, J.-Ã…., and Carlquist, M. (1997). Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758

    PubMed  CAS  Google Scholar 

  • Caldenhoven, E., Liden, J., Wissnik, S., Van de Stoipe, A., Raaijmakers, J., Koenderman, L., Okret, S., Gustafsson, J.-A., and Van der Sagg, P. T. (1995). Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiin-flammatory action of glucocorticoids. Mol. Endocrinol. 9, 401–412

    PubMed  CAS  Google Scholar 

  • Chawla, A., Boisvert, W. A., Lee, C. H., Laffitte, B. A., Barak, Y., Joseph, S. B., Liao, D., Nagy, L., Edwards, P. A., Curtiss, L. K., Evans, R. M., and Tontonoz, P. (2001). A PPAR gamma-LXR-ABCAl pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7, 161–71

    PubMed  CAS  Google Scholar 

  • Chawla, A., Repa, J., Evans, R., and Mangelsdorf, D. (2001). Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science 294, 1866–1870

    PubMed  CAS  Google Scholar 

  • Chen, J. D., and Evans, R. M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457

    PubMed  CAS  Google Scholar 

  • Chen, Z., Ishibashi, S., Perrey, S., Osuga, J., Gotoda, T., Kitamine, T., Tamura, Y., Okazaki, H., Yahagi, N., Iizuka, Y., Shionoiri, F., Ohashi, K., Harada, K., Shimano, H., Nagai, R., and Yamada, N. (2001). Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 21, 372–7

    PubMed  CAS  Google Scholar 

  • Claudel, T., Leibowitz, M. D., Fievet, C., Tailleux, A., Wagner, B., Repa, J. J., Torpier, G., Lobaccaro, J. M., Paterniti, J. R., Mangelsdorf, D. J., Heyman, R. A., and Auwerx, J. (2001). Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci U S A 98, 2610–5

    PubMed  CAS  Google Scholar 

  • Collins, A. R., Meehan, W. P., Kintscher, U., Jackson, S., Wakino, S., Noh, G., Palinski, W., Hsueh, W. A., and Law, R. E. (2001). Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21, 365–71

    PubMed  CAS  Google Scholar 

  • Cushman, M., Costantino, J. P., Tracy, R. P., Song, K., Buckley, L., Roberts, J. D., and Krag, D. N. (2001). Tamoxifen and cardiac risk factors in healthy women: Suggestion of an anti-inflammatory effect. Arterioscler Thromb Vasc Biol 21, 255–61

    PubMed  CAS  Google Scholar 

  • Cutolo, M., Carruba, G., Villaggio, B., Coviello, D. A., Dayer, J. M., Campisi, I., Miele, M., Stefano, R., and Castagnetta, L. A. (2001). Phorbol diester 12-0-tetradecanoylphorbol 13-acetate (TPA) up-regulates the expression of estrogen receptors in human THP-1 leukemia cells. J Cell Biochem 83, 390–400

    PubMed  CAS  Google Scholar 

  • Damm, K., Thompson, C. C., and Evans, R. M. (1989). Protein encoded by v-erbA functions as a thyroid-hormone antagonist. Nature 339, 593–597

    PubMed  CAS  Google Scholar 

  • Datta, S., Magge, S. N., Madison, L. D., and Jameson, J. L. (1992). Thyroid hormone receptor mediates transcriptional activation and repression of different promoters in vitro. Mol.Endocrinol. 6, 815–25X

    PubMed  CAS  Google Scholar 

  • Deluca, H. F., and Cantorna, M. T. (2001). Vitamin D: its role and uses in immunology. Faseb J 15, 2579–85

    PubMed  CAS  Google Scholar 

  • Dempster, D. W., Moonga, B. S., Stein, L. S., Horbert, W. R., and Antakly, T. (1997). Glu-cocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apopto-sis. J Endocrinol 154, 397–406

    PubMed  CAS  Google Scholar 

  • Desreumaux, P., Dubuquoy, L., Nutten, S., Peuchmaur, M., Englaro, W., Schoonjans, K., Derijard, B., Desvergne, B., Wahli, W., Chambon, P., Leibowitz, M. D., Colombel, J. F., and Auwerx, J. (2001). Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 193, 827–38

    PubMed  CAS  Google Scholar 

  • Diab, A., Deng, C., Smith, J. D., Hussain, R. Z., Phanavanh, B., Lovett-Racke, A. E., Drew, P. D., and Racke, M. K. (2002). Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy- Delta(l2,l4)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 168, 2508–15

    PubMed  CAS  Google Scholar 

  • Ellis, C. N., Varani, J., Fisher, G. J., Zeigler, M. E., Pershadsingh, H. A., Benson, S. C., Chi, Y., and Kurtz, T. W. (2000). Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol 136, 609–16

    PubMed  CAS  Google Scholar 

  • Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science 240, 889–895

    PubMed  CAS  Google Scholar 

  • Forman, B. M., Chen, J., and Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl. Acad. Sci. USA 94, 4312–4317

    PubMed  CAS  Google Scholar 

  • Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., and Evans, R. M. (1995). 15-Deoxy-Δ 12,14 - prostaglandin J2 is a ligand for the adipocyte determination factor PPARy. Cell 83, 803–812

    PubMed  CAS  Google Scholar 

  • Frazier-Jessen, M. R., and Kovacs, E. J. (1995). Estrogen modulation of JE/monocyte che-moattractant protein-1 mRNA expression in murine macrophages. J Immunol 154, 1838–45

    PubMed  CAS  Google Scholar 

  • Fu, X., Menke, J. G., Chen, Y., Zhou, G., MacNaul, K. L., Wright, S. D., Sparrow, C. P., and Lund, E. G. (2001). 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 276, 38378–87

    PubMed  CAS  Google Scholar 

  • Glass, C. K., and Rosenfeld, M. G. (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes and Dev. 14, 121–141

    PubMed  CAS  Google Scholar 

  • Gordon, S. (1995). The macrophage. Bioessays 17, 977–986

    PubMed  CAS  Google Scholar 

  • Griffin, M. D., Lutz, W. H., Phan, V. A., Bachman, L. A., McKean, D. J., and Kumar, R. (2000). Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 270, 701–8

    PubMed  CAS  Google Scholar 

  • Heck, S., Bender, K., Kullmann, M., Gottlicher, M., Herrlich, P., and Cato, A. C. (1997). I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. Embo J 16, 4698–707

    PubMed  CAS  Google Scholar 

  • Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736

    PubMed  CAS  Google Scholar 

  • Helmberg, A., Auphan, N., Caelles, C., and Karin, M. (1995). Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocor-ticoid receptor. EMBO J. 14, 452–460

    PubMed  CAS  Google Scholar 

  • Herrlich, P., and Ponta, H. (1994). Mutual cross-modulation of steroid-retinoic acid receptor and AP-1 transcription factor activities: a novel property with practical implications. Trends Endocrinol. Metab. 5, 341–356

    PubMed  CAS  Google Scholar 

  • Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., and et al. (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor [see comments]. Nature 377, 397–404

    PubMed  CAS  Google Scholar 

  • Huang, J. T., Welch, J. S., Ricote, M., Binder, C. J., Willson, T. M., Kelly, C., Witztum, J. L., Funk, C. D., Conrad, D., and Glass, C. K. (1999). Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378–382

    PubMed  CAS  Google Scholar 

  • Jiang, C., Ting, A. T., and Seed, B. (1998). PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86

    PubMed  CAS  Google Scholar 

  • Jonat, C., Rahmsdorf, H. J., Park, K.-K., Ponta, H., and Herrlich, P. (1990). Anti-tumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62, 1189–1204

    PubMed  CAS  Google Scholar 

  • Joyce, D. A., Steer, J. H., and Abraham, L. J. (1997). Glucocorticoid modulation of human monocyte/macrophage function: control of TNF-alpha secretion. Inflamm Res 46, 447–51

    PubMed  CAS  Google Scholar 

  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S.-C., Heyman, R., Rose, D., Glass, C., and Rosenfeld, M. (1996). A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414

    PubMed  CAS  Google Scholar 

  • Kastner, P., Mark, M., and Chambon, P. (1995). Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869

    PubMed  CAS  Google Scholar 

  • Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I., and Forstermann, U. (1996). Glucocorti-coids inhibit the induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription factor nuclear factor-kappa B. Mol Pharmacol 49, 15–21

    PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., and Lehmann, J. M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated recep-torγ and promotes adipocyte differentiation. Cell 83, 813–819

    PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., Devchand, P., Wahli, W., Willson, T. M., Lenhard, J. M., and Lehman, J. M. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl. Acad. Sci. U.S.A. 94, 4318–4323

    PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Umesono, K., Mangelsdorf, D. J., and Evans, R. M. (1992). Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355, 446–449

    PubMed  CAS  Google Scholar 

  • Koehler, L., Hass, R., DeWitt, D. L., Resch, K., and Goppelt-Struebe, M. (1990). Glucocorticoid-induced reduction of prostanoid synthesis in TPA- differentiated U937 cells is mainly due to a reduced cyclooxygenase activity. Biochem Pharmacol 40, 1307–16

    PubMed  CAS  Google Scholar 

  • Kohro, T., Nakajima, T., Wada, Y, Sugiyama, A., Ishii, M., Tsutsumi, S., Aburatani, H., Imoto, I., Inazawa, J., Hamakubo, T., Kodama, T., and Emi, M. (2000). Genomic structure and mapping of human orphan receptor LXR alpha: upregulation of LXRa mRNA during monocyte to macrophage differentiation. J Atheroscler Thromb 7, 145–51

    PubMed  CAS  Google Scholar 

  • Komi, J., and Lassila, O. (2000). Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood 95, 2875–82

    PubMed  CAS  Google Scholar 

  • Laffitte, B. A., Joseph, S. B., Walczak, R., Pei, L., Wilpitz, D. C., Collins, J. L., and Tonto-noz, P. (2001). Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol 21, 7558–68

    PubMed  CAS  Google Scholar 

  • Li, A., Brown, K., Silvestre, M., Willson, T., Palinski, W., and Glass, C. (2000). Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 106, 523–531

    PubMed  CAS  Google Scholar 

  • Li, M., Pascual, G., and Glass, C. (2000). Peroxisome Proliferator-Activated Receptor y-Dependent Repression of the Inducible Nitric Oxide Synthase Gene. Mol. Cell. Biol. 20, 4699–4707

    PubMed  CAS  Google Scholar 

  • Luisi, B. E, Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Sigler, P. B. (1991). Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505

    PubMed  CAS  Google Scholar 

  • Maglich, J. M., Sluder, A., Guan, X., Shi, Y., McKee, D. D., Carrick, K., Kamdar, K., Willson, T. M., and Moore, J. T. (2001). Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2

    Google Scholar 

  • Mangelsdorf, D. J., and Evans, R. M. (1995). The RXR heterodimers and orphan receptors. Cell 83, 841–850

    PubMed  CAS  Google Scholar 

  • McKay, L., and Cidlowski, J. (2000). CBP (CREB Binding Protein) Integrates NF-κB Nuclear Factor-κB) and Glucocorticoid Receptor Physical interactions and Antagonism. Molecular Endocrinology 14, 1222–1234

    PubMed  CAS  Google Scholar 

  • McKay, L. I., and Cidlowski, J. A. (1999). Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocrine Reviews 20, 435–59

    PubMed  CAS  Google Scholar 

  • McKenna, N. J., and O’Malley, B. W. (2002). Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–74

    PubMed  CAS  Google Scholar 

  • Moras, D., and Gronemeyer, H. (1998). The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell. Biol. 10, 384–391

    PubMed  CAS  Google Scholar 

  • Näär, A. M., Boutin, J. M., Lipkin, S. M., Yu, V. C., Holloway, J. M., Glass, C. K., and Rosenfeld, M. G. (1991). The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65, 1267–1279

    PubMed  Google Scholar 

  • Nagy, L., Tontonoz, P., Alvarez, J. G. A., Chen, H., and Evans, R. M. (1998). Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPAR-gamma. Cell 93, 229–240

    PubMed  CAS  Google Scholar 

  • Nakajima, H., Kizaki, M., Ueno, H., Muto, A., Takayama, N., Matsushita, H., Sonoda, A., and Ikeda, Y. (1996). All-trans and 9-cis retinoic acid enhance 1,25-dihydroxyvitamin D3- induced monocytic differentiation of U937 cells. Leuk Res 20, 665–76

    PubMed  CAS  Google Scholar 

  • Nissen, R. M., and Yamamoto, K. R. (2000). The glucocorticoid receptor inhibits NFkap-paB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 14, 2314–29

    PubMed  CAS  Google Scholar 

  • Paech, K., Webb, P., Kuiper, G. G., Nilsson, S., Gustafsson, J., Kushner, P. J., and Scanlan, T. S. (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277, 1508–10

    PubMed  CAS  Google Scholar 

  • Peet, D. J., Janowski, B. A., and Mangelsdorf, D. J. (1998). The LXRs: a new class of oxys-terol receptors. Curr Opin Genet Dev 8, 571–5

    PubMed  CAS  Google Scholar 

  • Piemonti, L., Monti, P., Sironi, M., Fraticelli, P., Leone, B. E., Dal Cin, E., Allavena, P., and Di Carlo, V. (2000). Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 164, 4443–51

    PubMed  CAS  Google Scholar 

  • Rastinejad, F., Perlmann, T., Evans, R. M., and Sigler, P. B. (1995). Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375 203–211

    PubMed  CAS  Google Scholar 

  • Ray, A., and Prefontaine, K. E. (1994). Physical association and function antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. Proc. Natl. Acad. Sci. U.S.A. 91, 752–756

    PubMed  CAS  Google Scholar 

  • Reckless, J., Metcalfe, J. C, and Grainger, D. J. (1997). Tamoxifen decreases cholesterol sevenfold and abolishes lipid lesion development in apolipoprotein E knockout mice. Circulation 95, 1542–8

    PubMed  CAS  Google Scholar 

  • Renaud, J.-R, Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., and Moras, D. (1995). Crystal structure of the RAR-γ ligand-binding domain bound to all-trans ret-inoic acid. Nature 378, 681–689

    PubMed  CAS  Google Scholar 

  • Ricote, M., Geller, P., and Perucho, M. (1997). Frequent alterations in gene expression in colon tumor cells of the microsatellite mutator phenotype. Mutation Res. 374, 153–167

    PubMed  CAS  Google Scholar 

  • Ricote, M., Huang, J., Fajas, L., Li, A., Welch, J., Najib, J., Witztum, J. L., Auwerx, J., Palinski, W., and Glass, C. K. (1998). Expression of the peroxisome proliferator-acti-vated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA. 95, 7614–7619

    PubMed  CAS  Google Scholar 

  • Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., and Glass, C. K. (1998). The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82

    PubMed  CAS  Google Scholar 

  • Roodman, G. D. (1999). Cell biology of the osteoclast. Exp Hematol 27, 1229–41

    PubMed  CAS  Google Scholar 

  • Roy, S., Frodsham, A., Saha, B., Hazra, S. K., Mascie-Taylor, C. G., and Hill, A. V. (1999). Association of vitamin D receptor genotype with leprosy type. J Infect Dis 179, 187–91

    PubMed  CAS  Google Scholar 

  • Sap, J., Munoz, A., Schmitt, J., Stunnenberg, H., and Vennstrom, B. (1989). Repression of transcription mediated at a thyroid hormone response element by the v-erb-A onco-gene product. Nature 340, 242–244

    PubMed  CAS  Google Scholar 

  • Scheinman, R. I., Gualberto, A., Jewell, C. M., Cidlowski, J. A., and Baldwin, A. S., Jr. (1995). Characterization of mechanisms involved in transrepression of NF-κB activated glucocorticoid receptors. Mol. Cell. Biol. 15, 242–244

    Google Scholar 

  • Schimmer, B., and Parker, K. (1996). ACTH, adrenocortical steroids and their synthetic analogs. Goodman and Gilman’s Pharmacologiocal Basis of Therapeutics H. JG and L. LE New York, McGraw Hill. -, -

    Google Scholar 

  • Schmidt, M., Kreutz, M., Loffler, G., Scholmerich, J., and Straub, R. H. (2000). Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J En-docrinol 164, 161–9

    CAS  Google Scholar 

  • Schule, R., Rangarajan, P., Yang, N., Kliewer, S., Ransone, L. J., Bolado, J., Verma, I. M., and Evans, R. M. (1991). Retinoic acid is a negative regulator of AP-1-responsive genes. Proc.Natl.Acad.Sci.U.S.A. 88, 6092–6096

    PubMed  CAS  Google Scholar 

  • Setoguchi, K., Misaki, Y., Terauchi, Y., Yamauchi, T., Kawahata, K., Kadowaki, T., and Yamamoto, K. (2001). Peroxisome proliferator-activated receptor-gamma haploinsuf-fìciency enhances B cell proliferative responses and exacerbates experimentally induced arthritis. J Clin Invest 108, 1667–75

    PubMed  CAS  Google Scholar 

  • Sheppard, K.-A., Phelps, K. M., Williams, A. J., Tbano, D., Rosenfeld, M. G., Glass, C. K., Gerritsen, M. E., and Collins, T. (1998). Nuclear integration of glucocorticoid receptor and nuclear factor-κB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem. 273, 29291–29294

    PubMed  CAS  Google Scholar 

  • Shevde, N. K., Bendixen, A. C, Dienger, K. M., and Pike, J. W. (2000). Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci U S A 97, 7829–34

    PubMed  CAS  Google Scholar 

  • Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., and Greene, G. L. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937

    PubMed  CAS  Google Scholar 

  • Stein, B., and Yang, M. X. (1995). Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κB and C/EBPß. Mol. Cell. Biol. 15, 4971–4979

    PubMed  CAS  Google Scholar 

  • Su, C. G., Wen, X., Bailey, S. T., Jiang, W., Rangwala, S. M., Keilbaugh, S. A., Flanigan, A., Murthy, S., Lazar, M. A., and Wu, G. D. (1999). A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J. Clin. Invest. 104, 383–389

    PubMed  CAS  Google Scholar 

  • Tall, A. R., and Wang, N. (2000). Tangier disease as a test of the reverse cholesterol transport hypothesis. J Clin Invest 106, 1205–7

    PubMed  CAS  Google Scholar 

  • Tanaka, J., and Fujita, H. (1997). Glucocorticoid- and mineralocorticoid receptors in microgial cells: the two receptors mediate differential effects of corticosteroids. Glia 20, 23–27

    PubMed  CAS  Google Scholar 

  • Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and Rosenfeld, M. G. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684

    PubMed  CAS  Google Scholar 

  • Umesono, K., and Evans, R. M. (1989). Determinants of Target Gene Specificity for Steroid/Thyroid Hormone Receptors. Cell 57, 1139–1146

    PubMed  CAS  Google Scholar 

  • Umesono, K., Murakami, K. K., Thompson, C. C., and Evans, R. M. (1991). Direct repeats as selective response elements for the thyroid hormone, retinoic acid,and vitamin D3 receptors. Cell 65, 1255–1266

    PubMed  CAS  Google Scholar 

  • Valentine, J. E., Kalkhoven, E., White, R., Hoare, S., and Parker, M. G. (2000). Mutations in the estrogen receptor ligand binding domain discriminate between hormone-dependent transactivation and transrepression. J Biol Chem 275, 25322–9

    PubMed  CAS  Google Scholar 

  • Vayssière, B. M., Dupont, S., Choquart, A., Petit, E, Garcia, T., Marchandeau, C, Grone-meyer, H., and Resche-Rigon, M. (1997). Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol. Endo. 11, 1245–1255

    Google Scholar 

  • Wagner, R. L., Apriletti, J. W, McGrath, M. E., West, B. L., Baxter, J. D., and Fletterick, R. J. (1995). A structural role for hormone in the thyroid hormone receptor. Nature 378, 690–697

    PubMed  CAS  Google Scholar 

  • Winoto, A., and Littman, D. R. (2002). Nuclear hormone receptors in T lymphocytes. Cell 109 Suppl, S57–66

    Google Scholar 

  • Yang-Yen, H.-E, Chambard, J.-C, Sun, Y.-L., Smeal, T., Schmidt, T. J., Drouin, J., and Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62, 1205–1215

    PubMed  CAS  Google Scholar 

  • Young, S. G., and Fielding, C. J. (1999). The ABCs of cholesterol efflux. Nat Genet 22, 316–8

    PubMed  CAS  Google Scholar 

  • Yu, V. C.,elsert, C., Andersen, B., Holloway, J. M., Devary, O. V., Näär, A. M., Kim, S. Y., Boutin, J. M., Glass, C. K., and Rosenfeld, M. G. (1991). RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone,and vitamin D receptors to their cognate response elements. Cell 67, 1251–1266

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Welch, J.S., Glass, C.K. (2003). Nuclear Receptors as Regulators of Macrophage Homeostasis and Function. In: Gordon, S. (eds) The Macrophage as Therapeutic Target. Handbook of Experimental Pharmacology, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55742-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55742-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62919-8

  • Online ISBN: 978-3-642-55742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics