Skip to main content

Dark Matter Distribution from Gravitational Entropy Evolution

  • Conference paper
  • 195 Accesses

Abstract

A recently introduced measure of the gravitational entropy evolution due to formation of structure in the universe provides a number of scaling laws, which generate a sequence of discrete inhomogeneities ranging from the particle physics scale to clusters and superclusters of galaxies. We demonstrate that from the growth of gravitational entropy, as manifestation of increasing inhomogeneity in a time evolving universe, the mean total mass content as well as core and dark matter halo radii of specific structure scales can be deduced where only Hubble’s parameter must be provided as input. The derived parameter spectrum characterizing the sequence of bound structure scales is critically analyzed in view of presently available observational material and found to reproduce remarkably well the hierarchy of known global inhomogeneity scales. The gravitational entropy concept provides also naturally a global constant dark energy background, shown to contribute with a fraction of \( {{\Omega }_{q}}\sim 0.7 \) to the density parameter and yielding in an \( {{\Omega }_{0}}\sim 1 \) universe the density of clustered matter \( {{\Omega }_{m}}\sim 0.3 \).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chandrasekar: Nature 139, 757 (1937)

    Article  ADS  Google Scholar 

  2. P.A.M. Dirac: Nature 139, 323 (1937)

    Article  ADS  MATH  Google Scholar 

  3. G.F.R. Ellis: gr-qc/0102017, and references therein

    Google Scholar 

  4. S.W. Hawking: Phys. Rev. D 13, 2460 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  5. J.D. Bekenstein: Phys.Rev. D 23, 287 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  6. J.D. Bekenstein: gr-qc/0107049

    Google Scholar 

  7. R. Penrose: The Emperor’s New Mind (Oxford University Press, Oxford, 1990)

    Google Scholar 

  8. T. Rothman, P. Anninos: Phys. Lett A 224, 227 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M.P. Leubner: Nucl. Phys. B (Proc. Suppl.) 80, 09/10 (2000) astro-ph/0111502

    Google Scholar 

  10. M.P. Leubner: in Proc. of the IX Marcel Grossmann Meeting, 2000, ed. by R.T. Jantzen, V Gurzadyan and R. Ruffini (World Scientific, Singapore, 2002)

    Google Scholar 

  11. G.’t Hooft: in Salam-Festschrift: A collection of talks, edited by A. Ali, J. Ellis, and S. Randjbar-Daemi, (World Scientific, Singapore, 1993) gr-qc/9310026

    Google Scholar 

  12. L. Susskind: J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. N. Kaloper, A. Linde: Phys. Rev. D 60, 103509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Easther, D. Lowe: Phys. Rev. Lett., 82, 4967 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. G. Veneziano: Phys. Lett. B 454, 22 (1999)

    Article  ADS  Google Scholar 

  16. R. Brustein, G. Veneziano: Phys. Rev. Lett. 84, 5695 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  17. D.P. Rideout, R. Sorkin: Phys. Rev. D 61, 024002 (2000);

    MathSciNet  ADS  Google Scholar 

  18. R.D. Sorkin: gr-qc/0003043

    Google Scholar 

  19. M.P. Leubner: Gravitation and Cosmology Suppl. 6, 144 (2000)

    Google Scholar 

  20. M.R. Anderberg: Cluster Analysis for Applications, Probability and Mathematical Statistics, edited by Z. W. Birnbaum and E. Lukas (Academic Press, 1973)

    Google Scholar 

  21. P.A. Zizzi: gr-qc/0103002 and references therein

    Google Scholar 

  22. Y.J. Ng: Phys. Rev. Lett. 86, 2946 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Xu, L. Fang, X. Wu: ApJ 532,728 (2000)

    Article  ADS  Google Scholar 

  24. M.P. Leubner: Proceedings of the 20th Texas Symposium on Relativistic Astrophysics, ed. by J. C. Wheeler and H. Martel (American Institute of Physics, 2000)

    Google Scholar 

  25. C.H. Lineweaver: astro-ph/0112381

    Google Scholar 

  26. S. Bludman, M. Roos: ApJ 547, 77 (2001)

    Article  ADS  Google Scholar 

  27. A. Burkert, G.H. Smith: ApJ 542, L95 (2000)

    Article  ADS  Google Scholar 

  28. E. Ben-Jacob, Z. Hermon, A. Shnirman: Phys. Lett. A 256, 369 (1999)

    Article  ADS  Google Scholar 

  29. M. Yu. Kuchiev: Class. Quantum Grav. 15, 1895 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. L. Wang, R.R. Caldwell, J.P. Ostriker, P.J. Steinhardt: ApJ 530, 17 (2000)

    Article  ADS  Google Scholar 

  31. J.A. Frieman, C.T. Hill, A.S. Stebbins, I. Waga: Phys. Rev. Lett. 75, 2077 (1995)

    Article  ADS  Google Scholar 

  32. S. Weinberg: in Gravitation and Cosmology, (John Wiley & Sons, New York, 1972)

    Google Scholar 

  33. M.E. Bailey: in Asteroids, Comets, Meteors, ed. by A. Milani, M. di Martino and A. Cellino, IAU Symposium 160, 443 (Kluwer Academic Publisher, 1994)

    Chapter  Google Scholar 

  34. S.J. Weidenschilling: Space Sci. Rev. 92, 295 (2000)

    Article  ADS  Google Scholar 

  35. W. Benz, R. Kallenbach, G.W. Lugmair: Space Sci. Rev. 92 (2000)

    Google Scholar 

  36. R.L. Allen, G.M. Bernstein, R. Malhotra: ApJ 549, L241 (2001)

    Article  ADS  Google Scholar 

  37. W.E. Harris, R.E. Pudritz: ApJ 429, 177 (1994)

    Article  ADS  Google Scholar 

  38. C.V. Manning: ApJ 518, 226 (1999)

    Article  ADS  Google Scholar 

  39. D.R. Smith, G.M. Bernstein, P. Fischer, M. Jarvis: ApJ 551, 643 (2001)

    Article  ADS  Google Scholar 

  40. A. Klypin, A.V. Kravtsov, J.S. Bullock, J.R. Primack: ApJ 554, 903 (2001)

    Article  ADS  Google Scholar 

  41. E.S. Sheldon et al.: ApJ 554, 881 (2001)

    Article  ADS  Google Scholar 

  42. A.C. Fabian: Clusters and Superclusters of Galaxies, (Kluwer Acad. Press, 1992)

    Book  Google Scholar 

  43. M.J. West, A. Oemler jr., A. Dekel: ApJ 346, 539 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leubner, M.P. (2002). Dark Matter Distribution from Gravitational Entropy Evolution. In: Klapdor-Kleingrothaus, H.V., Viollier, R.D. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55739-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55739-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62920-4

  • Online ISBN: 978-3-642-55739-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics