Gauged Inflation

  • Ralf Hofmann
  • Mathias Th. Keil
Conference paper


We propose a model for cosmic inflation which is based on an effective description of strongly interacting, nonsupersymmetric matter within the framework of dynamical abelian projection and centerization. The underlying gauge symmetry is assumed to be SU(N) with N>>1. Appealing to a thermodynamical treatment, the ground-state structure of the model is determined by a potential for the inflaton field (monopole condensate) which allows for nontrivially BPS saturated and thereby stable solutions. For T < Mp this leads to an apparent decoupling of gravity from the inflaton dynamics. The ground state dynamics implies a heat capacity for the vacuum leading to inflation for temperatures comparable to the mass scale M of the potential. The dynamics has an attractor property. In contrast to the usual slow-roll paradigm we have m >> H during inflation. As a consequence, density perturbations generated from the inflaton are irrelevant for the formation of large-scale structure, and the model has to be supplemented with an inflaton independent mechanism for the generation of spatial curvature perturbations. Within a small fraction of the Hubble time inflation is terminated by a transition of the theory to its center symmetric phase. Due to the prevailing Z N symmetry relic vector bosons are stabilized and therefore potential originators of UHECR’s beyond the GZK bound.


Gauge Symmetry Hubble Parameter Cold Dark Matter Density Perturbation Closed Universe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.H. Guth, Phys. Rev. D23, 347 (1981).ADSGoogle Scholar
  2. 2a.
    A.D. Linde, Phys. Lett. B108, 389 (1982).MathSciNetADSGoogle Scholar
  3. 2b.
    A. Albrecht and P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).ADSGoogle Scholar
  4. 2c.
    A.H. Guth and P.J. Steinhardt, Sci. Am., May 1984, p. 90.Google Scholar
  5. 3.
    A.D. Linde, Rep. Prog. Phys. 47, 925 (1984).MathSciNetADSGoogle Scholar
  6. 4.
    A.R Liddle and D.H. Lyth, Cosmological Inflation and Large Scale Structure, Cambridge University Press (2000).Google Scholar
  7. 5a.
    V. Berezinsky, M. Kachelriess, A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997), astro-ph/9708217.ADSGoogle Scholar
  8. 5b.
    V.A. Kuzmin and V.A. Rubakov, Phys. Atom. Nucl. 61, 1028 (1998), astro-ph/9709187.ADSGoogle Scholar
  9. 6.
    L. Randall and S. Thomas, Nucl. Phys. B449, 229 (1995), hep-ph/9407248.ADSGoogle Scholar
  10. 7a.
    M. Bucher and Y. Zhu, Phys. Rev. D55, 7415 (1997), astro-ph/9610223.ADSGoogle Scholar
  11. 7b.
    A. Dolgov and K. Freese, Phys. Rev. D51, 2693 (1995), hep-ph/9410346.ADSGoogle Scholar
  12. 7c.
    K. Freese, Phys. Rev. D50, 7731 (1994), astro-ph/9405045.ADSGoogle Scholar
  13. 8.
    G. ‘t Hooft, Nucl. Phys. B190, 455 (1981).MathSciNetADSGoogle Scholar
  14. 9a.
    T. Suzuki, Prog. Theor. Phys. 80, 929 (1988); 81, 752 (1989).ADSGoogle Scholar
  15. 9b.
    S. Maedan and T. Suzuki, Prog. Theor. Phys. 81, 229 (1989).ADSGoogle Scholar
  16. 9c.
    H. Ichie, H. Suganuma and H. Toki, Phys. Rev. D 52, 2944 (1995).ADSGoogle Scholar
  17. 9d.
    M.N. Chernodub, F.V. Gubarev, M.I. Polikarpov, V.I. Zakharov, Nucl. Phys. B600, 163 (2001), hep-th/0010265.MathSciNetADSGoogle Scholar
  18. 10a.
    L. Del Debbio, M. Faber, J. Greensite, and S. Olejnik, Phys. Rev. D55, 2298 (1997), hep-lat/9610005.ADSGoogle Scholar
  19. 10b.
    P. de Forcrand and M. D’Elia, Phys. Rev. Lett. 82, 4582 (1999), hep-lat/9901020.ADSGoogle Scholar
  20. 11a.
    E.B. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976).Google Scholar
  21. 11b.
    M.K. Prasad and C.M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).ADSGoogle Scholar
  22. 12a.
    X. Hou, A. Losev, and M. Shifman, Phys. Rev. D61, (2000) 085005.MathSciNetADSGoogle Scholar
  23. 12b.
    G. Dvali and M. Shifman, Phys. Lett. B454, (1999) 277.ADSGoogle Scholar
  24. 12c.
    R. Hofmann, Phys. Rev. D62, 065012 (2000), hep-th/0004178.ADSGoogle Scholar
  25. 13a.
    A. Sornborger and M. Parry, Phys. Rev. Lett. 83, 666 (1999), hep-ph/9811520.ADSGoogle Scholar
  26. 13b.
    A. Sornborger and M. Parry, Phys. Rev. D62, 083511 (2000), hep-ph/0004230.ADSGoogle Scholar
  27. 14.
    J.G. Garcia-Bellido and E. Ruiz Morales, hep-ph/0109230.Google Scholar
  28. 15.
    G.N. Felder, L. Kofman, A.D. Linde, Phys. Rev. D64, 123517 (2001), hep-th/0106179.ADSGoogle Scholar
  29. 16.
    M.F. Parry and A.T. Sornborger, Phys. Rev. D60, 103504 (1999), hep-ph/9805211.ADSGoogle Scholar
  30. 17.
    R. Hofmann, hep-ph/0201073.Google Scholar
  31. 18.
    D.H. Lyth and D. Wands, Phys. Lett. B524, (2002) 5, hep-ph/0110002.ADSGoogle Scholar
  32. 19.
    L.M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989).ADSGoogle Scholar
  33. 20a.
    K. Hamaguchi, Y. Nomura, and T. Yanagida, Phys. Rev. D58, 103503 (1998), hep-ph/9805346.ADSGoogle Scholar
  34. 20b.
    K. Hamaguchi and Y. Nomura, Phys. Rev. D59, 063507 (1999), hep-ph/9809426.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ralf Hofmann
    • 1
  • Mathias Th. Keil
  1. 1.Werner-Heisenberg-InstitutMax-Planck-Institut für PhysikMünchenGermany

Personalised recommendations