Skip to main content

Theoretical Directional and Modulated Rates for Direct SUSY Dark Matter Detection

  • Conference paper
Dark Matter in Astro- and Particle Physics
  • 197 Accesses

Abstract

Exotic dark matter together with the vacuum energy (cosmological constant) seem to dominate in the flat Universe. Thus direct dark matter detection is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). Furthermore from the knowledge of the density and velocity distribution of the LSP, the quark substructure of the nucleon and the nuclear structure (form factor and/or spin response function), one is able to evaluate the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low. So it is imperative to exploit the two signatures of the reaction, namely the modulation effect, i.e. the dependence of the event rate on the Earth’s motion, and the directional asymmetry, i.e. the dependence of the rate on the the relative angle between the direction of the recoiling nucleus and the sun’s velocity. These two signatures are studied in this paper employing various velocity distributions and a supersymmetric model with universal boundary conditions at large tanβ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffe, A.H. et al., Phys. Rev. Lett. 86, 3475 (2001).

    ADS  Google Scholar 

  2. Smoot, G.F. et al., (COBE data), Astrophys. J. 396 (1992) L1.

    ADS  Google Scholar 

  3. Gawiser, E. and Silk, JScience 280, 1405 (1988);

    Google Scholar 

  4. Gross, M.A.K. Somerville, R.S., Primack, J.R., Holtzman, J. and Klypin, A.A.,Mon. Not. R. Astron. Soc. 301, 81 (1998).

    ADS  Google Scholar 

  5. Riess, A.G. et al, Astron. J. 116 (1998), 1009.

    ADS  Google Scholar 

  6. Somerville, R.S., J.R. Primack and S.M. Faber, astro-ph/9806228; Mon. Not. R. Astron. Soc. (in press).

    Google Scholar 

  7. Perlmutter, S. et al (1999) Astrophys. J. 517,565;

    ADS  Google Scholar 

  8. Perlmutter, S. et al (1997) Astrophys. J. 483,565 (astroph/9812133).

    ADS  Google Scholar 

  9. Perlmutter, S., Turner, M.S. and White, M., Phys. Rev. Let. 83, 670 (1999).

    ADS  Google Scholar 

  10. Einasto, Jaan, in Dark Matter inj Astro- and Particle Physics, p.3, Ed. H.V. Klapdor-Kleingrothaus, Springer-Verlag Berlin Heidelberg 2001.

    Google Scholar 

  11. Bennett, D.P. et al, (MACHO collaboration), A binary lensing event toward the LMC: Observations and Dark Matter Implications, Proc. 5th Annual Maryland Conference, edited by S. Holt (1995);

    Google Scholar 

  12. Alcock, C. et al, (MACHO collaboration), Phys. Rev. Lett 74, 2967 (1995).

    Google Scholar 

  13. Bernabei, R. et al., INFN/AE-98/34, (1998);

    Google Scholar 

  14. Bernabei, R. et al., it Phys. Lett. B 389, 757 (1996).

    ADS  Google Scholar 

  15. Bernabei, R. et al., Phys. Lett. B 424, 195 (1998);

    ADS  Google Scholar 

  16. Bernabei, R. et al., Phys. Lett. B 450, 448 (1999).

    ADS  Google Scholar 

  17. For more references see e.g. our previous report: Vergados, J.D., Supersymmetric Dark Matter Detection- The Directional Rate and the Modulation Effect, hep-ph/0010151;

    Google Scholar 

  18. Gómez, M.E., Vergados, J.D., Phys. Lett. B 512, 252 (2001);

    ADS  Google Scholar 

  19. hep-ph/0012020. Gómez, M.E., Lazarides, G. and Pallis, C., Phys. Rev. D61 (2000) 123512

    ADS  Google Scholar 

  20. Gómez, M.E., Lazarides, G. and Pallis, C. Phys. Lett. B 487, 313 (2000).

    ADS  Google Scholar 

  21. Gomez, M.E. and Vergados, J.D., hep-ph/0105115.

    Google Scholar 

  22. Bottino, A. et al, Phys. Lett B 402, 113 (1997).

    ADS  Google Scholar 

  23. Arnowitt, R. and Nath, P., Phys. Rev. Lett 74, 4952 (1995);

    Google Scholar 

  24. Arnowitt, R. and Nath, P. Phys. Rev. D 54, 2394 (1996); hep-ph/9902237;

    ADS  Google Scholar 

  25. Bednyakov, V.A., Klapdor-Kleingrothaus, H. V. and Kovalenko, S.G., Phys. Lett. B 329, 5 (1994).

    ADS  Google Scholar 

  26. Arnowitt, R. and Dutta, B., Supersymmetry anmd Dark Matter, hep-ph/0204187.

    Google Scholar 

  27. Vergados, J.D., J. of Phys. G 22, 253 (1996).

    ADS  Google Scholar 

  28. Kosmas, T.S. and Vergados, J.D., Phys. Rev. D 55, 1752 (1997).

    Google Scholar 

  29. Drees, M. and Nojiri, M.M., Phys. Rev. D47 (1993) 376; (1985).

    Google Scholar 

  30. Drees, M. and Nojiri, M.M., Phys. Rev. D 48, 3843 (1993); Phys. Rev. D 47, 4226 (1993).

    Google Scholar 

  31. Djouadi, A. and Drees, M., Phys. Lett. B 484 (2000) 183; Dawson, S., Nucl. Phys. B359,283 (1991);

    Google Scholar 

  32. Spira, M. it et al, Nucl. Phys. B453,17 (1995).

    ADS  Google Scholar 

  33. Cheng, T.P., Phys. Rev. D 38 2869 (1988);

    ADS  Google Scholar 

  34. Cheng, H-Y., Phys. Lett. B 219 347 (1989).

    ADS  Google Scholar 

  35. Ressell, M.T., et al, Phys. Rev. D 48, 5519 (1993);

    ADS  Google Scholar 

  36. Vergados, J.D. and Kosmas, T.S. Physics of Atomic nuclei, Vol. 61, No 7, 1066 (1998) (from Yadernaya Fisika, Vol. 61, No 7, 1166 (1998).

    ADS  Google Scholar 

  37. Divari, P.C., Kosmas, T.S., Vergados, J.D. and Skouras, L.D., Phys. Rev. C 61 (2000), 044612–1.

    Google Scholar 

  38. Vergados, J.D., Phys. Rev. D 58, 103001–1 (1998).

    ADS  Google Scholar 

  39. Vergados, J.D., Phys. Rev. Lett 83, 3597 (1999).

    ADS  Google Scholar 

  40. Vergados, J.D., Phys. Rev. D 62, 023519 (2000).

    ADS  Google Scholar 

  41. Vergados, J.D., Phys. Rev. D 63, 06351 (2001).

    Google Scholar 

  42. Buckland, K.N., Lehner, M.J. and Masek, G.E., in Proc. 3nd Int. Conf. on Dark Matter in Astro- and part. Phys. (Dark2000), Ed., Klapdor-Kleingrothaus, H.V., Springer Verlag (2000).

    Google Scholar 

  43. CDF Collaboration, FERMILAB-Conf-99/263-E CDF; http://fnalpubs.fnal.gov/archive/1999/conf/Conf-99–263-E.html.

    Google Scholar 

  44. Dorman, P.J., ALEPH Collaboration March 2000, http://alephwww.cern.ch/ALPUB/seminar/lepcmar200/lepc2000.pdf./ALPUB/seminar/lepcmar200/lepc2000.pdf.

  45. Vergados, J.D., SUSY Dark Matter in Universe- Theoretical Direct Detection Rates, Proc. NANP-01, International Conference on Non Accelerator New Physics, Dubna, Russia, June 19–23, 2001, Editors V. Bednyakov and S. Kovalenko, hepph/0201014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vergados, J. (2002). Theoretical Directional and Modulated Rates for Direct SUSY Dark Matter Detection. In: Klapdor-Kleingrothaus, H.V., Viollier, R.D. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55739-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55739-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62920-4

  • Online ISBN: 978-3-642-55739-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics