Status of Supersymmetry in the Light of Recent Experiments

  • Utpal Chattopadhyay
  • Achille Corsetti
  • Pran Nath
Conference paper


In this talk we discuss the constraints on supersymmetry arising from data from a number of recent experiments. There appears to be good cumulative evidence from experiment in favor of positivity of the sign of the Higgs mixing parameter μ. Implications of this result for Yukawa unification are discussed since Yukawa unification is sensitive to the μ sign. An analysis of dark matter under the constraints of Yukawa unification is also given. It is shown that the simultaneous imposition of all existing constraints sharply defines the parameter space of models. Specifically models with nonuniversality of gaugino masses provide a simple resolution to the positivity of the μ parameter and Yukawa unification. Implications of these results for colliders and for the next generation of dark matter searches are also discussed.


Dark Matter Extra Dimension Light Supersymmetric Particle Cold Dark Matter Gaugino Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eur. Phys. J. C15, 1(2000).Google Scholar
  2. 2.
    For a review see, K. R. Dienes, Phys. Rept. 287,447 (1997).MathSciNetADSCrossRefGoogle Scholar
  3. 3a.
    L. J. Hall and U. Sarid, Phys. Rev. Lett. 70, 2673 (1993);ADSCrossRefGoogle Scholar
  4. 3b.
    T. Dasgupta, P. Mamales and P. Nath, Phys. Rev. D 52,5366 (1995);ADSCrossRefGoogle Scholar
  5. 3c.
    D. Ring, S. Urano and R. Arnowitt, Phys. Rev. D 52, 6623 (1995).ADSCrossRefGoogle Scholar
  6. 4.
    S. Chen (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001).ADSCrossRefGoogle Scholar
  7. 5.
    H. Tajima, talk at the 20th International Symposium on Lepton-Photon Interactions”, Rome, July 2001.Google Scholar
  8. 6.
    R. Barate, Phys. Lett. B429,169(1998).ADSCrossRefGoogle Scholar
  9. 7.
    SUGRA Working Group Collaboration (S. Abel et. al.), arXiv:hep-ph/0003154.Google Scholar
  10. 8a.
    P. Nath and R. Arnowitt, Phys. Lett. B 336,395 (1994); Phys. Rev. Lett. 74, 4592 (1995);CrossRefGoogle Scholar
  11. 8b.
    F. Borzumati, M. Drees and M. Nojiri, Phys. Rev. D 51, 341 (1995);ADSCrossRefGoogle Scholar
  12. 8c.
    H. Baer, M. Brhlik, D. Castano and X. Tata, Phys. Rev. D 58, 015007 (1998).ADSCrossRefGoogle Scholar
  13. 9a.
    M. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Phys. Lett. B499 141 (2001); G. Degrassi, P. Gambino, G.F. Giudice, JHEP 0012, 009 (2000) and references therein;ADSCrossRefGoogle Scholar
  14. 9b.
    W. de Boer, M. Huber, A.V. Gladyshev, D.I. Kazakov, Eur. Phys. J. C 20, 689 (2001).ADSCrossRefGoogle Scholar
  15. 10a.
    P. Gambino and M. Misiak, Nucl. Phys. B611,338 (2001);ADSCrossRefGoogle Scholar
  16. 10b.
    P. Gambino and U. Haisch, JHEP 0110, 020 (2001). See also T. Hurth, hep-ph/0106050. For previous analysis see,ADSCrossRefGoogle Scholar
  17. 10c.
    A.L. Kagan and M. Neubert, Eur. Phys. J. C7, 5(1999).ADSGoogle Scholar
  18. 11.
    [LEP Higgs Working Group Collaboration], “Searches for the neutral Higgs bosons of the MSSM: Preliminary combined results using LEP data collected at energies up to 209-GeV,” arXiv:hep-ex/0107030.Google Scholar
  19. 12.
    H.N. Brown et al., Muon (g – 2) Collaboration, Phys. Rev. Lett. 86, 2227 (2001).ADSCrossRefGoogle Scholar
  20. 13.
    R. Arnowitt and P. Nath, Phys. Rev. Lett. 69,725 (1992)ADSCrossRefGoogle Scholar
  21. 14.
    Y. Totsuka, Talk at the SUSY2K conference at CERN, June 2000.Google Scholar
  22. 15.
    A. Czarnecki and W.J. Marciano, Nucl. Phys. (Proc. Suppl.) B76, 245(1999).ADSCrossRefGoogle Scholar
  23. 16a.
    H. Hayakawa, T. Kinoshita and A. Sanda, Phys. Rev. Lett. 75,790(1995); Phys. Rev. D54, 3137(1996);ADSCrossRefGoogle Scholar
  24. 16b.
    M. Hayakwa and T. Kinoshita, Phys. Rev. D57,465(1998).ADSGoogle Scholar
  25. 17.
    J. Bijnens, E. Pallante and J. Prades, Phys. Rev. Lett. 75,1447(1995); J. Bijnens, E. Pallante and J. Prades, Phys. Rev. Lett. 75,3781(1995); E. Nucl. Phys. B474, 379(1996). See also: M. Hayakawa and T. Kinoshita, arXiv:hep-ph/0112102.Google Scholar
  26. 18a.
    M. Knecht and A. Nyffeler, arXiv:hep-ph/0111058;Google Scholar
  27. 18b.
    M. Knecht, A. Nyffeler, M. Perrottet and E. de Rafael, Phys. Rev. Lett. 88, 071802 (2002).ADSCrossRefGoogle Scholar
  28. 19.
    M. Hayakawa and T. Kinoshita, arXiv:hep-ph/0112102.Google Scholar
  29. 20.
    J. Bijnens, E. Pallante and J. Prades, arXiv:hep-ph/0112255.Google Scholar
  30. 21.
    I. Blokland, A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 88,071803 (2002).ADSCrossRefGoogle Scholar
  31. 22.
    M. Ramsey-Musolf and M. B. Wise, theory,” arXiv:hep-ph/0201297.Google Scholar
  32. 23.
    M. Davier and A. Höcker, Phys. Lett B 435, 427 (1998).CrossRefGoogle Scholar
  33. 24a.
    For other assessments of the hadronic error see, F.J. Yndurain, hep-ph/0102312; J.F. De Troconiz and F.J. Yndurain, arXiv:hep-ph/0106025;Google Scholar
  34. 24b.
    S. Narison, Phys. Lett. B 513,53 (2001);ADSCrossRefGoogle Scholar
  35. 24c.
    K. Melnikov, Int. Jour, of Mod. Phys. A16,4591, (2001) [arXiv:hep-ph/0105267];ADSCrossRefGoogle Scholar
  36. 24d.
    G. Cvetic, T. Lee and I. Schmidt, Phys. Lett. B 520,222 (2001). For a review of status of the hadronic error see, W.J. Marciano and B.L. Roberts, “Status of the hadronic contribution to the muon g – 2 value”, arXiv:hep- ph/0105056; J. Prades, “The Standard Model Prediction for Muon g–2, arXiv:hep- ph/0108192ADSCrossRefGoogle Scholar
  37. 25a.
    A.H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49,970 (1982);ADSCrossRefGoogle Scholar
  38. 25b.
    R. Barbieri, S. Ferrara and CA. Savoy, Phys. Lett B 119, 343 (1982);CrossRefGoogle Scholar
  39. 25c.
    L. Hall, J. Lykken, and S. Weinberg, Phys. Rev. D 27, 2359 (1983):ADSGoogle Scholar
  40. 25d.
    P. Nath, R. Arnowitt and A.H. Chamseddine, Nucl. Phys. B 227, 121 (1983). For reviews, see P. Nath, R. Arnowitt and A.H. Chamseddine, “Applied N=1 Supergravity”, world scientific, 1984;ADSCrossRefGoogle Scholar
  41. 25e.
    H.P. Nilles, Phys. Rep. 110,1(1984).ADSCrossRefGoogle Scholar
  42. 26a.
    T. C. Yuan, R. Arnowitt, A. H. Chamseddine and P. Nath, Z. Phys. C 26, 407 (1984);ADSCrossRefGoogle Scholar
  43. 26b.
    D.A. Kosower, L.M. Krauss, N. Sakai, Phys. Lett. B 133, 305 (1983);ADSCrossRefGoogle Scholar
  44. 27.
    J.L. Lopez, D.V. Nanopoulos, X. Wang, Phys. Rev. D 49, 366 (1994).ADSCrossRefGoogle Scholar
  45. 28a.
    U. Chattopadhyay and P. Nath, Phys. Rev. D.53, 1648 (1996);ADSCrossRefGoogle Scholar
  46. 28b.
    T. Moroi, Phys. Rev. D 53, 6565 (1996);ADSGoogle Scholar
  47. 28c.
    M. Carena, M. Giudice and C.E.M. Wagner, Phys. Lett B 390, 234 (1997);ADSCrossRefGoogle Scholar
  48. 28d.
    E. Gabrielli and U. Sarid, Phys. Rev. Lett. 79,4752 (1997);ADSCrossRefGoogle Scholar
  49. 28e.
    K.T. Mahanthappa and S. Oh, Phys. Rev. D 62, 015012 (2000); T. Blazek, arXiv:hep- ph/9912460;ADSCrossRefGoogle Scholar
  50. 28f.
    U.Chattopadhyay, D. K. Ghosh and S. Roy, Phys. Rev. D 62, 115001 (2000).ADSCrossRefGoogle Scholar
  51. 29.
    T. Ibrahim and P. Nath, Phys. Rev. bf D61,095008(2000); Phys. Rev. D62, 015004(2000); arXiv:hep-ph/0107325Google Scholar
  52. 30.
    U. Chattopadhyay and P. Nath, Phys. Rev. Lett. 86, 5854 (2001)ADSCrossRefGoogle Scholar
  53. 31a.
    L. L. Everett, G. L. Kane, S. Rigolin and L. Wang, Phys. Rev. Lett. 86, 3484 (2001);ADSCrossRefGoogle Scholar
  54. 31b.
    J. L. Feng and K. T. Matchev, Phys. Rev. Lett. 86, 3480 (2001);ADSCrossRefGoogle Scholar
  55. 31c.
    E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001);ADSCrossRefGoogle Scholar
  56. 31d.
    U. Chattopadhyay and P. Nath, Phys. Rev. Lett. 86, 5854 (2001);ADSCrossRefGoogle Scholar
  57. 31e.
    S. Komine, T. Moroi, and M. Yamaguchi, Phys. Lett. B 506, 93 (2001); Phys. Lett. B 507, 224 (2001);ADSCrossRefGoogle Scholar
  58. 31f.
    J. Ellis, D.V. Nanopoulos, K. A. Olive, Phys. Lett. B 508, 65 (2001);ADSCrossRefGoogle Scholar
  59. 31g.
    R. Arnowitt, B. Dutta, B. Hu, Y. Santoso, Phys. Lett. B 505, 177 (2001);ADSCrossRefGoogle Scholar
  60. 31h.
    S. P. Martin, J. D. Wells, Phys. Rev. D 64, 035003 (2001);ADSCrossRefGoogle Scholar
  61. 31i.
    H. Baer, C. Balazs, J. Ferrandis, X. Tata, Phys. Rev. D46: 035004, (2001); M. Byrne, C. Kolda, J.E. Lennon, arXiv:hep-ph/0108122. For a more complete set of references see, U. Chattopadhyay and P. Nath, arXiv:hep-ph/0108250.ADSGoogle Scholar
  62. 32a.
    CMS Collaboration, Technical Proposal: CERN/LHCC 94–38(1994); ATLAS Col- laboration, Technical Proposal, CERN/LHCC 94–43(1944);Google Scholar
  63. 32b.
    H. Baer, C-H. Chen, F. Paige and X. Tata, Phys. Rev. D52,2746(1995); Phys. Rev. D53, 6241(1996).ADSGoogle Scholar
  64. 33a.
    P. Nath and M. Yamaguchi, Phys. Rev. D 60,116004 (1999); Phys. Rev. D 60, 116006 (1999).ADSCrossRefGoogle Scholar
  65. 33b.
    See also K. Agashe, N. G. Deshpande and G. H. Wu, Phys. Lett. B 489, 367 (2000). For a review see, P. Nath, arXiv:hep-ph/0011177ADSCrossRefGoogle Scholar
  66. 34.
    M. L. Graesser, Phys. Rev. D 61,074019 (2000) [arXiv:hep-ph/9902310].MathSciNetADSCrossRefGoogle Scholar
  67. 35.
    C. D. Hoyle, U. Schmidt, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, D. J. Kapner and H. E. Swanson, Phys. Rev. Lett. 86, 1418 (2001) [arXiv:hep- ph/0011014].ADSCrossRefGoogle Scholar
  68. 36a.
    P. Nath, Y. Yamada and M. Yamaguchi, Phys. Lett. B 466, 100 (1999) [arXiv:hep- ph/9905415];ADSCrossRefGoogle Scholar
  69. 36b.
    I. Antoniadis, K. Benakli and M. Quiros, Phys. Lett. B 460, 176 (1999) [arXiv:hep-ph/9905311];ADSCrossRefGoogle Scholar
  70. 36c.
    T.G. Rizzo, Phys. Rev. D61,055005(2000).ADSGoogle Scholar
  71. 37.
    T. Ibrahim, U. Chattopadhyay and P. Nath, Phys. Rev. D 64,016010 (2001) [arXiv:hep-ph/0102324].ADSCrossRefGoogle Scholar
  72. 38a.
    T. Ibrahim and P.Nath, Phys. Rev. D64,093002(2001);ADSGoogle Scholar
  73. 38b.
    J.L. Feng, K.T. Matchev, and Y. Shadmi, Nucl. Phys. B613,366(2001).ADSCrossRefGoogle Scholar
  74. 39.
    Y.K. Semertzidis, hep-ph/0012087Google Scholar
  75. 40a.
    D. Pierce, J. Bagger, K. Matchev and R. Zhang, Nucl. Phys. B491,3(1997);ADSCrossRefGoogle Scholar
  76. 40b.
    H. Baer, H. Diaz, J. Ferrandis and X. Tata, Phys. Rev. D61,111701(2000).ADSGoogle Scholar
  77. 41.
    W. de Boer, M. Huber, A.V. Gladyshev, D.I. Kazakov, Eur. Phys. J. C 20,689 (2001); W. de Boer, M. Huber, C. Sander, and D.I. Kazakov, arXiv:hep-ph/0106311;ADSCrossRefGoogle Scholar
  78. 42a.
    L.J. Hall, R. Rattazzi and U. Sarid, Phys. Rev D50,7048 (1994);ADSGoogle Scholar
  79. 42b.
    R. Hempfling, Phys. Rev D49,6168 (1994);ADSGoogle Scholar
  80. 42c.
    M. Carena, M. Olechowski, S. Pokorski and C. Wagner, Nucl. Phys. B426, 269 (1994);ADSCrossRefGoogle Scholar
  81. 42d.
    D. Pierce Nucl. Phys. B491,3(1997).Google Scholar
  82. 43.
    H. Baer and J. Ferrandis, Phys. Rev. Lett.87, 211803 (2001).ADSCrossRefGoogle Scholar
  83. 44.
    T. Blazek, R. Dermisek and S. Raby, Phys. Rev. Lett. 88, 111804 (2002); T. Blazek, R. Dermisek and S. Raby, arXiv:hep-ph/0107097; R. Dermisek, arXivrhep- ph/0108249; S. Raby, arXiv:hep-ph/0110203.ADSCrossRefGoogle Scholar
  84. 45.
    S. Komine and M. Yamaguchi, arXiv:hep-ph/0110032Google Scholar
  85. 46.
    U. Chattopadhyay and P. Nath, Phys. Rev. D 65, 075009 (2002).ADSCrossRefGoogle Scholar
  86. 47a.
    G. Anderson, C.H. Chen, J.F. Gunion, J. Lykken, T. Moroi, and Y. Yamada, arXiv:hep-ph/9609457;Google Scholar
  87. 47b.
    G. Anderson, H. Baer, C-H Chen and X. Tata, Phys. Rev. D 61,095005 (2000).ADSCrossRefGoogle Scholar
  88. 48.
    N. Chamoun, C-S Huang, C Liu, and X-H Wu, Nucl. Phys. B624,81 (2002).ADSCrossRefGoogle Scholar
  89. 49.
    U. Chattopadhyay, A. Corsetti and P. Nath, arXiv:hep-ph/0201001; arXiv:hep- ph/0202275.Google Scholar
  90. 50.
    J. Ellis, astro-ph/0204059Google Scholar
  91. 51a.
    R. Arnowitt and P. Nath, Phys. Rev. D 60,044002 (1999);ADSCrossRefGoogle Scholar
  92. 51b.
    A. Corsetti and P. Nath, Int. J. Mod. Phys. A 15,905 (2000);ADSGoogle Scholar
  93. 51c.
    P. Belli, R. Bernbei, A. Bottino, F. Donato, N. Fornengo, D. Prosperi, and S. Scopel, Phys. Rev. D61,023512(2000);ADSGoogle Scholar
  94. 51d.
    J. Ellis, T. Falk, K. A. Olive, M. Srednicki, Astropart. Phys. 13,181(2000);ADSCrossRefGoogle Scholar
  95. 51e.
    M.E. Gomez, G. Lazarises, and C. Pallis, Phys. Lett. B487,313(2000);ADSCrossRefGoogle Scholar
  96. 51f.
    J.L. Feng, K.T. Matchev. F. Wilczek, Phys. Lett. B482, 388(2000); Phys. Rev. D 63, 045024 (2001); M. Brhlik and G.L. Kane, hep-ph/0005158;ADSCrossRefGoogle Scholar
  97. 51g.
    R. Arnowitt, B. Dutta, and Y. Santoso, Nucl. Phys. B606,59(2001);ADSCrossRefGoogle Scholar
  98. 51h.
    J. D. Vergados, Phys. Rev. D 63,063511 (2001);ADSCrossRefGoogle Scholar
  99. 51i.
    T. Nihei, L. Roszkowski and R. Ruiz de Austri, JHEP 0203,031 (2002). V. A. Bednyakov, H. V. Klapdor-Kleingrothaus and E. Zaiti, arXiv:hep-ph/0203108.ADSCrossRefGoogle Scholar
  100. 52.
    M.E. Gomez, G. Lazarides and C. Pallis, Phys. Rev. D61,123512(2000).ADSGoogle Scholar
  101. 53.
    A. Corsetti and P. Nath, Phys. Rev. D 64, 125010 (2001); hep-ph/0011313.ADSCrossRefGoogle Scholar
  102. 54.
    M. M. Pavan, I. I. Strakovsky, R. L. Workman and R. A. Arndt, arXiv:hep- ph/0111066; SAID pion-nucleon database,; A. Bottion, F. Donato, N. Fornengo and S. Scopel, hep-ph/0111229.
  103. 55.
    B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Rev. D 44, 1613 (1991).ADSCrossRefGoogle Scholar
  104. 56.
    K.L. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D 58, 096004 (1998).ADSCrossRefGoogle Scholar
  105. 57a.
    P. Nath and R. Arnowitt, Mod. Phys.Lett.A2, 331(1987);ADSCrossRefGoogle Scholar
  106. 57b.
    H. Baer and X. Tata, Phys. Rev.D47, 2739(1993);ADSGoogle Scholar
  107. 57c.
    V. Barger and C. Kao, Phys. Rev. D60,115015(1999).ADSGoogle Scholar
  108. 58.
    R. Belli, Phys. Lett.B480,23(2000), “Search for WIMP annual modulation signature: results from DAMA/NAI-3 and DAMA/NAI-4 and the global combined analysis”, DAMA collaboration preprint INFN/AE-00/01, 1 February, 2000.ADSGoogle Scholar
  109. 59.
    R. Abusaidi, Phys. Rev. Lett.84, 5699(2000), “Exclusion Limits on WIMP- Nucleon Cross-Section from the Cryogenic Dark Matter Search”, CDMS Collabo- ration preprint CWRU-P5–00/UCSB-HEP-00–01 and astro-ph/0002471.ADSCrossRefGoogle Scholar
  110. 60.
    H.V. Klapor-Kleingrothaus,, “GENIUS, A Supersensitive Germanium Detector System for Rare Events: Proposal”, MPI-H-V26–1999, arXiv:hep-ph/9910205.Google Scholar
  111. 61a.
    J. Ellis, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B202,43(1982);ADSCrossRefGoogle Scholar
  112. 61b.
    P. Nath, R. Arnowitt and A.H. Chamseddine, Phys. Rev. D32,2348(1985); Phys. Lett.B156, 215(1985);ADSGoogle Scholar
  113. 61c.
    J. Hisano, H. Murayama and T. Yanagida, Nucl. Phys. B402,46(1993);ADSCrossRefGoogle Scholar
  114. 61d.
    T. Goto and T. Nihei, Phys. Rev. D59, 115009(1999);ADSGoogle Scholar
  115. 61e.
    V. Lucas and S. Raby, Phys. Rev. D55,6986(1997);ADSGoogle Scholar
  116. 61f.
    K.S. Babu, J.C. Pati and F. Wilczek, Nucl. Phys. B566, 33(2000).ADSCrossRefGoogle Scholar
  117. 62.
    R. Dermisek, A. Mafi and S. Raby, Phys. Rev. D 63,035001 (2001)ADSCrossRefGoogle Scholar
  118. 63.
    H. Murayama and A. Pierce, Phys. Rev. D 65,055009 (2002)ADSCrossRefGoogle Scholar
  119. 64.
    S. Aoki, Phys. Rev. D62,014506(2000).ADSGoogle Scholar
  120. 65.
    G. Altarelli, F. Feruglio and I. Masina, JHEP 0011, 040 (2000)ADSCrossRefGoogle Scholar
  121. 66.
    P. Nath and R. M. Syed, Phys. Lett. B 506,68 (2001); Nucl. Phys. B 618, 138 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Utpal Chattopadhyay
    • 1
  • Achille Corsetti
    • 2
  • Pran Nath
    • 2
  1. 1.Harish-Chandra Research InstituteJhusi, AllahabadIndia
  2. 2.Department of PhysicsNortheastern UniversityBostonUSA

Personalised recommendations