Skip to main content

Combining Mental Fit and Data Fit for Classification Rule Selection

  • Conference paper
Exploratory Data Analysis in Empirical Research

Abstract

Mental fit of classification rules is lately introduced to judge the adequacyof such rules for human understanding. This paper first discusses the various criteria introduced in relation to mental fit in the literature. Based on this, the paper derives a general criterion for the interpretability of partitions generated by classification rules. We introduce interpretability as a combination of mental fit and data fit, or more specifically, as a combination of comprehensibility and reliability of a partition. Weintroduce so-called prototypes to improve comprehensibility, and the so-called reliability of such prototypes as a measure of data fit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AAMODT, A., and PLAZA, E (1994): Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches AI Communications, 7(1):39–59.

    Google Scholar 

  • BODENHOFER, U., and BAUER, P. (1999): Towards an Axiomatic Treatment of “Interpretability”, in Proceedings of the 6th International Conference on Soft Computing (IIZUKA2000), Iizuka, Japan, 334–339.

    Google Scholar 

  • BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A., and STONE, C. J. (1984): Classification and Regression Trees, Wadsworth, Belmont.

    MATH  Google Scholar 

  • CORNELL, J. A. (1990): Experiments with mixtures. 2nd edition, Wiley.

    Google Scholar 

  • EIJKEL, VAN DEN G. (1999): Rule Induction, in Berthold, Hand (Eds.): Intelligent Data Analysis: An Introduction, Springer, Berlin, 195–216.

    Chapter  Google Scholar 

  • FENG, C. and MICHIE, D. (1994): Machine Learning of Rules and Trees, in Michie, Spiegelhalter, and Taylor (Eds.): Machine Learning, Neural and Statistical Classification, Ellis Horwood, New York, 50–83.

    Google Scholar 

  • FUKUNAGA, K. (1990): Introduction to Statistical Pattern Recognition, Academic Press, New York.

    MATH  Google Scholar 

  • HAND, D. J. (1997): Construction and Assessment of Classification Rules, Wiley, Chichester

    MATH  Google Scholar 

  • LU, H., SETIONO, R., and LIU, H. (1995): Neuro Rule: A Connectionist Approach to Data Mining, in Proceedings of the 1st VLDB Conference Zürich, Switzerland, 1995

    Google Scholar 

  • MICHIE, D., SPIEGELHALTER, D. J., and TAYLOR, C. C. (1994): Conclusions in Michie, Spiegelhalter, and Taylor (Eds.): Machine Learning, Neural and Statistical Classification, Ellis Horwood, New York, 213–227.

    Google Scholar 

  • RISSANEN, J. (1978): Modeling by Shortest Data Description. Automatica 14, 465–471.

    Article  MATH  Google Scholar 

  • SILBERSCHATZ, A., and TUZHILIN, A. (1996): What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering, 8, 970–974.

    Article  Google Scholar 

  • SMYTH, P. and GOODMAN, R. (1992): An information theoretic approach to rule induction from databases. IEEE Transactions on Knowledge and Data Engineering, 4, 301–316

    Article  Google Scholar 

  • SONDHAUß, U. and WEIHS, C. (2001): Standardizing the Comparison of Partitions, submitted to Journal of Computational Statistics.

    Google Scholar 

  • WANG, K., TAY, W., and LIU, B. (1998): An interestingness-based interval merger for numeric association rules, in Proceedings of the International Conference on Knowledge Discovery and Data Mining, August 1998, New York City, AAAI, 121–128.

    Google Scholar 

  • WEIHS, C. (1992): Vorhersagefähigkeit multivariater linearer Methoden: Simulation und Grafik, in Enke, Gölles, Haux and Wernecke (Eds.): Methoden und Werkzeuge für die exploratorische Datenanalyse in den Biowissenschaften, Fischer, Stuttgart, 111–127.

    Google Scholar 

  • WEIHS, C. (1993): Multivariate Exploratory Data Analysis and Graphics: A Tutorial. Journal of Chemometrics 7, 305–340.

    Article  Google Scholar 

  • WEIHS, C., ROEHL, M. C., and THEIS, W. (1999): Multivariate classification of business phases, Technical Report 26/1999, SFB 475, Universität Dortmund.

    Google Scholar 

  • WEISS, S. M. and KULIKOWSKI, C. A. (1991): Computer Systems that Learn; Morgan Kaufmann, San Francisco, 114, 168/9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weihs, C., Sondhauss, U.M. (2003). Combining Mental Fit and Data Fit for Classification Rule Selection. In: Schwaiger, M., Opitz, O. (eds) Exploratory Data Analysis in Empirical Research. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55721-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55721-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44183-0

  • Online ISBN: 978-3-642-55721-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics