Skip to main content

Foamy Virus Vectors

  • Chapter
Foamy Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 277))

Abstract

Successful treatment for diseases such as cancer and AIDS will likely involve particular combinations of drug therapy, immunotherapy, and gene therapy. Gene therapy is a novel approach currently under development for treatment of a variety of diseases (Anderson 1998). This novel therapy offers a fresh alternative, which endows a therapeutic effect by introduction of a particular gene into targeted cells. The effect of gene therapy in the host will depend, in part, on the efficiency of the vector system used to deliver the effector molecule. Numerous vector constructions have been used to deliver and express genes in human cells. Biological vectors for gene therapy are constructed from several viruses that include herpes simplex virus type 1, adenovirus, adenoassociated virus, and retroviruses (Kay et al. 2001; Robbins et al. 1998; Romano et al. 2000; Smith 1999; Wolfe et al. 1999; Wu and Ataai 2000). Among these vectors, retroviruses are most widely used as an efficient means for introducing foreign DNA into the cell genome. The life cycle of retroviruses involves stable integration of viral genetic material into the host genome; expression of viral genes is, in part, regulated by host cell factors (Coffin et al. 1997). These features of retroviruses make them useful for selected applications of gene transfer in animals and humans. Retroviral vectors are significant for basic biological investigations such as studies of cell lineage, mechanisms of carcinogenesis, and developmental and tissue-specific regulation of defined DNA sequences as well as clinical uses for gene therapy (Varmus 1988). Clinical applications of retroviral

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bock M, Heinkelein M, Lindemann D, Rethwilm A (1998) Cells expressing the human foamy virus (HFV) accessory Bet protein are resistant to productive HFV superinfection. Virology 250:194-204

    PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 89:6580-6584

    PubMed  CAS  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Nail Acad Sci USA 90:8033-8037

    CAS  Google Scholar 

  • Cain D, Erlwein O, Grigg A, Russell RA and McClure MO (2001) Palindromic sequence plays a critical role in human foamy virus dimerization. J Virol 75:3731-3739

    PubMed  CAS  Google Scholar 

  • Callahan ME, Switzer WM, Matthews AL, Roberts BD, Heneine W, Folks TM, Sandstrom PA (1999) Persistent zoonotic infection of a human with simian foamy virus in the absence of an intact orf-2 accessory gene. J Virol 73:9619-9624

    PubMed  CAS  Google Scholar 

  • Campbell M, Renshaw-Gegg L, Renne R, Luciw PA (1994) Characterization of the internal promoter of simian foamy viruses. J Virol 68:4811-4820

    PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de-Saint-Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669-72

    PubMed  CAS  Google Scholar 

  • Charneau P, Alizon M, Clavel F (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 66:2814-2820

    PubMed  CAS  Google Scholar 

  • Civin C (2000) Gene therapy in clinical applications. Stem Cells 180:150-156

    Google Scholar 

  • Clavel F, Orenstein JM (1990) A mutant of human immunodeficiency virus with re- duced RNA packaging and abnormal particle morphology. J Virol 64:5230-5234

    PubMed  CAS  Google Scholar 

  • Clever JL, Parslow TG (1997) Mutant human immunodeficiency virus type 1 gen- omes with defects in RNA dimerization or encapsidation. J Virol 71:3407-3414

    PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE, eds (1997) Retroviruses. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Eglitis MA, Anderson WF (1988) Retroviral vectors for introduction of genes into mammalian cells. BioTechniques 6:608-614

    PubMed  CAS  Google Scholar 

  • Enssle J, Fischer N, Moebes A, Mauer B, Smola U, Rethwilm A (1997) Carboxy-terminal cleavage of the human foamy virus gag precursor molecule is an essential step in the viral life cycle. J Virol 71:7312-7317

    PubMed  CAS  Google Scholar 

  • Erlwein O, Bieniasz PD, McClure MO (1998) Sequences in pol are required for transfer of human foamy virus-based vectors. J Virol 72:5510-5516

    PubMed  CAS  Google Scholar 

  • Erlwein O, Cain D, Fischer N, Rethwilm A, McClure MO (1997) Identification of sites that act together to direct dimerization of human foamy virus RNA in vitro. Virology 229:251-258

    PubMed  CAS  Google Scholar 

  • Fauci AS (1996) Host factors and the pathogenesis of HIV-induced disease. Nature 384:529-534

    PubMed  CAS  Google Scholar 

  • Federico M (1999) Lentiviruses as gene delivery vectors. Curr Opin Biotechnol 10:448-453

    PubMed  CAS  Google Scholar 

  • Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Muller JG, Rethwilm A (1998) Foamy virus particle formation. J Virol 72:16101615

    Google Scholar 

  • Flügel RM (1991) Spumaviruses: a group of complex retroviruses. J AIDS 4:739-750

    Google Scholar 

  • Flügel RM, Rethwilm A, Maurer B, Darai G (1987) Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO J 6:2077-84

    PubMed  Google Scholar 

  • Gallay P, Stitt V, Mundy C, Oettinger M, Trono D (1996) Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 70:1027-1032

    PubMed  CAS  Google Scholar 

  • Giron ML, Rozain F, Debons-Guillemin MC, Canivet M, Perks J, Emanoil-Ravier R (1993) Human foamy virus polypeptides: identification of env and bel gene products. J Virol 67:3596-3600

    PubMed  CAS  Google Scholar 

  • Gunji Y, Ochiai T, Shimada H, Matsubara H (2000) Gene therapy for cancer. Surg Today 30:967-73

    PubMed  CAS  Google Scholar 

  • Hahn H, Gerald B, Brautigam S, Mergia A, Neumann-Haefelin D, Daniel MD, McClure MO, Rethwilm A (1994) Reactivity of primate sera to foamy virus Gag and Bet proteins. J Gen Virol 75:2635-2644

    PubMed  CAS  Google Scholar 

  • He F, Sun JD, Garrett ED, Cullen BR (1993) Functional organization of the Bel-1 transactivator of human foamy virus. J Virol 67:1896-1904

    PubMed  CAS  Google Scholar 

  • Heinkelein M, Schmidt M, Fischer N, Moebes A, Lindemann D, Enssle J, Rethwilm A (1998) Characterization of a cis-acting sequence in the Pol region required to transfer human foamy virus vectors. J Virol 72:6307-6314

    PubMed  CAS  Google Scholar 

  • Heinkelein M, Thurow J, Dressler M, Imrich H, Neumann-Haefelin D, McClure MO, Rethwilm A (2000a) Complex effects of deletions in the 5' untranslated region of primate foamy virus on viral gene expression and RNA packaging. J Virol 74:3141-3148

    PubMed  CAS  Google Scholar 

  • Heinkelein M, Pietschmann T, Jarmy G, Dressler M, Imrich H, Thurow J, Lindemann D, Bock M, Moebes A, Roy J, Herchenröder O and Rethwilm A (2000b) Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 19:3436-3445

    PubMed  CAS  Google Scholar 

  • Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J, Lindemann D and Rethwilm A (2002a) Improved primate foamy virus vectors and packaging constructs. J Virol 76:3774-3783

    PubMed  CAS  Google Scholar 

  • Heinkelein M, Leurs C, Rammling M, Peters K, Hanenberg H and Rethwilm A (2002b) Pregenomic RNA is required for efficient incorporation of Pol polyprotein into foamy virus capsids. J Virol 76:(in press)

    Google Scholar 

  • Heneine W, Switzer WM, Sandstrom P, Brown J, Vedapuri S, Schable CA, Khan AS, Lerche NW, Schweizer M, Neumann-Haefelin D, Chapman LE, Folks TM (1998) Identification of a human population infected with simian foamy viruses. Nat Med 4:403-407

    PubMed  CAS  Google Scholar 

  • Herchenröder O, Renne R, Loncar D, Cobb EK, Murthy KK, Schneider J, Mergia A, Luciw PA (1994) Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201:187-199

    PubMed  Google Scholar 

  • Herchenröder O, Turek R, Neumann-Haefelin D, Rethwilm A, Schneider J (1995) Infectious proviral clones of chimpanzee foamy virus (SFVcpz) generated by long PCR reveal close functional relatedness to human foamy virus. Virology 214:685-689

    PubMed  Google Scholar 

  • Hildinger M, Abel KL, Ostertag W and Baum C (1999) Design of 5' untranslated se- quences in retroviral vectors developed for medical use. J Virol 73:4083-4089

    PubMed  CAS  Google Scholar 

  • Hill CL, Bieniasz PD, McClure MO (1999) Properties of human foamy virus relevant to its development as a vector for gene therapy. J Gen Virol 80:2003-2009

    PubMed  CAS  Google Scholar 

  • Hirata RK, Miller AD, Andrews RG, Russell DW (1996) Transduction of hematopoi- etic cells by foamy virus vectors. Blood 88:3654-3661

    PubMed  CAS  Google Scholar 

  • Hoogerbrugge PM, van Beusechem VW, Fischer A, Debree M, Deist Fl, Perignon JL, Morgan G, Gaspar B, Fairbanks LD, Skeoch CH, Moseley A, Harvey M, Levinsky RJ, Valerio D (1996) Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Ther 3:179-83

    PubMed  CAS  Google Scholar 

  • Hooks JJ, Detrick-Hooks B (1981) Spumavirinae: foamy virus group infections. Comparative aspects and diagnosis. In: Kurstak E, Kurstak C (eds) Comparative Diagnosis of Viral Disease. Academic Press, New York

    Google Scholar 

  • Josephson NC, Vassilopoulos G, Trobridge GD, Priestley GV, Wood BL, Papayannopoulou T, Russell DW (2002) Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci USA 99:8295-8300

    PubMed  CAS  Google Scholar 

  • Kantoff PW, Freeman SM, Anderson WF (1988) Prospects for gene therapy for immunodeficiency diseases. Annu Rev Immunol 6:581-594

    PubMed  CAS  Google Scholar 

  • Kaplan AH, Swanstrom R (1991) Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Nad Acad Sci USA 88:4528-4532

    CAS  Google Scholar 

  • Katz RA, Terry RW, Skalka AM (1986) A conserved cis-acting sequence in the 5' lead- er of avian sarcoma virus RNA is required for packaging. J Virol 59:163-167

    PubMed  CAS  Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Med 7:33-40

    PubMed  CAS  Google Scholar 

  • Keller A, Partin KM, Löchelt M, Bannert H, Flügel RM, Cullen BR (1991) Characterization of the transcriptional trans-activator of human foamy virus. J Virol 65:2589-2594

    PubMed  CAS  Google Scholar 

  • Kim HJ, Lee K, O'Rear JJ (1994) A short sequence upstream of the 5“ major splice site is important for encapsidation of HIV-1 genomic RNA. Virology 198:336-340

    PubMed  CAS  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72:811-816

    PubMed  CAS  Google Scholar 

  • Klimatcheva E, Resenblatt JD, Planelles V (1999) Lentiviral vectors and gene therapy. Front Biosci 4:D482-496

    Google Scholar 

  • Konvalinka J, Löchelt M, Zentgraf H, Flügel RM, Kräusslich HG (1995) Active foamy virus proteinase is essential for virus infectivity but not for formation of a Pol polyprotein. J Virol 69:7264-7268

    PubMed  CAS  Google Scholar 

  • Kouraklis G (2000) Gene therapy for cancer: from the laboratory to the patient. Dig Dis Sci 45:1045-1052

    CAS  Google Scholar 

  • Kräusslich HG, Ochsenbauer C, Traenckner AM, Mergener K, Facke M, Gelderblom HR, Bosch V (1993) Analysis of protein expression and virus-like particle formation in mammalian cell lines stably expressing HIV-1 gag and env gene products with or without active HIV proteinase. Virology 192:605-617

    PubMed  Google Scholar 

  • Kupiec J, Kay A, Hayat M, Ravier R, Perks J, Galibert F (1991) Sequence analysis of the simian foamy virus type 1 genome. Gene 101:185-194

    PubMed  CAS  Google Scholar 

  • Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M, Lindemann D, von Kalle C, Rethwilm A, Williams DA, Hanenberg H (2002) Comparison of three retroviral vector systems for transduction of NOD/SCID repopulating CD34+ cord blood cells (submitted)

    Google Scholar 

  • Lever A, Göttlinger H, Haseltine W, Sodroski J (1989) Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63:4085-4087

    PubMed  CAS  Google Scholar 

  • Levy J (1993) Pathogenesis of human immunodeficinecy virus infection. Microbiol Rev 57:183-289

    PubMed  CAS  Google Scholar 

  • Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretro- viruses but not for the human immunodeficiency virus. J Virol 68:510-516

    PubMed  CAS  Google Scholar 

  • Lifson JD, Reyes GR, McGrath MS, Stein BS, Engleman EG (1986) AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen Sci- ence 232:1123-1127

    CAS  Google Scholar 

  • Linial M (2000) Why aren't foamy viruses pathogenic? Trends Microbiol 8:284-289 Linial ML, Miller AD (1990) Retroviral RNA packaging: sequence requirements and implications. Curr Topics Micro Immunol 157:125-185

    Google Scholar 

  • Löchelt M, Flügel RM, Aboud M (1994) The human foamy virus internal promoter directs the expression of the functional Bel 1 and Bet protein early after infection. J Virol 68:638-645

    PubMed  Google Scholar 

  • Löchelt M, Muranyi W, Flügel RM (1993) Human foamy virus genome posses an internal, Bel-1-dependent and functional promoter. Proc Natl Acad Sci USA 90:7317-7321

    PubMed  Google Scholar 

  • Löchelt M, Zentgraf H, Flügel RM (1991) Construction of an infectious DNA clone of the full-length human spumaretrovirus genome and mutagenesis of the bel 1 gene. Virology 184:43-54

    PubMed  Google Scholar 

  • Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153-159

    PubMed  CAS  Google Scholar 

  • Maurer B, Bannert H, Darai G, Flügel RM (1988) Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretro- virus. J Virol 62:1590-1597

    PubMed  CAS  Google Scholar 

  • McCann EM, Lever AM (1997) Location of cis-acting signals important for RNA encapsidation in the leader sequence of human immunodeficiency virus type 2. J Virol 71:4133-4137

    PubMed  CAS  Google Scholar 

  • Meiering CD, Comstock KE, Linial ML (2000) Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J Virol 74:1718-1726

    PubMed  CAS  Google Scholar 

  • Mergia A (1994) Simian foamy virus type 1 contains a second promoter located at the 3' end of the env gene. Virology 199:219-222

    PubMed  CAS  Google Scholar 

  • Mergia A, Chari S, Kolson DL, Goodenow MM, Ciccarone T (2001) The efficiency of simian foamy virus vector type-1 (SFV-1) in nondividing cells and in human PBLs. Virology 280:243-252

    PubMed  CAS  Google Scholar 

  • Mergia A, Leung NJ, Blackwell J (1996) Cell tropism of the simian foamy virus type 1 (SFV-1). J Med Primatol 25:2-7

    PubMed  CAS  Google Scholar 

  • Mergia A, Luciw PA (1991) Replication and regulation of primate foamy viruses. Virology 184:475-482

    PubMed  CAS  Google Scholar 

  • Mergia A, Pratt-Lowe E, Shaw KE, Renshaw-Gegg LW, Luciw PA (1992) cis-Acting regulatory regions in the long terminal repeat of simian foamy virus type 1. J Virol 66:251-257

    PubMed  CAS  Google Scholar 

  • Mergia A, Shaw KE, Pratt-Lowe E, Barry PA, Luciw PA (1991) Identification of the simian foamy virus transcriptional transactivator gene (taf). J Virol 65:2903-2909

    PubMed  CAS  Google Scholar 

  • Mergia A, Wu M (1998) Characterization of provirus clones of simian foamy virus type 1 (SFV-1). J Virol 72:817-822

    PubMed  CAS  Google Scholar 

  • Miele G, Mouland A, Harrison GP, Cohen E, Lever AM (1996) The human immunodeficiency virus type 1 5“ packaging signal structure affects translation but does not function as an internal ribosome entry site structure. J Virol 70:944-951

    PubMed  CAS  Google Scholar 

  • Mikovits JA, Hoffman PM, Rethwilm A, Ruscetti FW (1996) In vitro infection of primary and retrovirus-infected human leukocytes by human foamy virus. J Virol 70:2774-2780

    PubMed  CAS  Google Scholar 

  • Miller AD (1992) Human gene therapy comes of age. Nature 357:455-460

    PubMed  CAS  Google Scholar 

  • Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6:2895-2902

    PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retroviral vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239-4242

    PubMed  CAS  Google Scholar 

  • Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A (1997) Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 71:7305-11

    PubMed  CAS  Google Scholar 

  • Morgan RA, Blaese RM (1999) Gene therapy: lessons learnt from the past decade. BMJ 319:1310-12

    PubMed  CAS  Google Scholar 

  • Mountain A (2000) Gene therapy: the first decade. Trends Biotechnol 18:119-128

    PubMed  CAS  Google Scholar 

  • Muranyi W, Flügel RM (1991) Analysis of splicing patterns of human spumaretro- virus by polymerase chain reaction reveals complex RNA structures. J Virol 65:727-735

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382-11388

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263-267

    PubMed  CAS  Google Scholar 

  • Naviaux RK, Costanzi E, Haas M, Verma IM (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70:5701-5705

    PubMed  CAS  Google Scholar 

  • Nestler U, Heinkelein M, Lucke M, Meixensberger J, Scheurlen W, Kretschmer A, Rethwilm A (1997) Foamy virus vectors for suicide gene therapy. Gene Ther 4:1270-1277

    PubMed  CAS  Google Scholar 

  • Neumann-Haefelin D, Schweizer M, Corsten B, Matz B (1986) Detection and characterization of infectious DNA intermediates of a primate foamy virus. J Gen Virol 67:1993-1999

    PubMed  CAS  Google Scholar 

  • Paillart JC, Berthoux L, Ottmann M, Darlix JL, Marquet R, Ehresmann B, Ehresmann C (1996) A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J Virol 70:8348-8354

    PubMed  CAS  Google Scholar 

  • Park J, Mergia A (2000) Mutational analysis of the 5' leader region of simian foamy virus type 1. Virology 274:203-212

    PubMed  CAS  Google Scholar 

  • Park J, Nadeau PE, Mergia A (2002) A minimal genome simian foamy virus type 1 (SFV-1) vector system with efficient gene transfer. Virology 302: 236-244

    PubMed  CAS  Google Scholar 

  • Poeschla EM, Wong-Staal F, Looney DJ (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4:354-357

    PubMed  CAS  Google Scholar 

  • Renne R, Mergia A, Renshaw-Gegg LW, Neumanm-Haefelin D, Luciw PA (1993) Regulatory elements in the long terminal repeat (LTR) of simian foamy virus type 3. Virol 192:365-369

    CAS  Google Scholar 

  • Renshaw RW, Casey JW (1994a) Analysis of the 5 ' long terminal repeat of bovine syncytial virus. Gene 141:221-224

    PubMed  CAS  Google Scholar 

  • Renshaw RW, Casey JW (1994b) Transcriptional mapping of the 3' end of the bovine syncytial virus genome. J Virol 68:1021-1028

    PubMed  CAS  Google Scholar 

  • Rethwilm A, Baunach G, Netzer K-O, Maurer B, Borisch B, ter Maulen V (1990) In- fectious DNA of the human spumaretrovirus. Nucleic Acids Res 18:733-738

    PubMed  CAS  Google Scholar 

  • Rethwilm A, Erlwein O, Baunach G, Maurer B, ter Meulen V (1991) The transcrip- tional transactivator of human foamy virus maps to the bel 1 genomic region. Proc Natl Acad Sci USA 88:941-945

    PubMed  CAS  Google Scholar 

  • Robbins P, Tahara H, Ghivizzani S (1998) Viral vectors for gene therapy. Trends Biotechnol 16:35-40

    PubMed  CAS  Google Scholar 

  • Rochlitz CF (2001) Gene therapy of cancer. Schweiz Med Wochenschr 131:4-9

    CAS  Google Scholar 

  • Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099-2108

    PubMed  CAS  Google Scholar 

  • Romano G, Micheli P, Pacilio C, Giordano A (2000) Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 18:19-39

    PubMed  CAS  Google Scholar 

  • Russell DW, Miller AD (1996) Foamy virus vectors. J Virol 70:217-22

    PubMed  CAS  Google Scholar 

  • Russell RA, Zeng Y, Erlwein O, Cullen BR, McClure MO (2001) The R region found in the human foamy virus long terminal repeat is critical for both Gag and Pol protein expression. J Virol 75:6817-6824

    PubMed  CAS  Google Scholar 

  • Saib A, Koken MH, van der Spek P, Perks J, de The H (1995) Involvement of a spliced and defective human foamy virus in the establishment of chronic infection. J Virol 69:5261-5268

    PubMed  CAS  Google Scholar 

  • Saib A, Puvion-Dutilleul F, Schmid M, Perks J, de The H (1997) Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J Virol 71:1155-61

    PubMed  CAS  Google Scholar 

  • Sandstrom PA, Phan KO, Switzer WM, Fredeking T, Chapman L, Heneine W, Folks TM (2000) Simian foamy virus infection among zoo keepers. Lancet 355:551-552

    PubMed  CAS  Google Scholar 

  • Schenk T, Enssle J, Fischer N, Rethwilm A (1999) Replication of a foamy virus mu- tant with a constitutively active U3 promoter and deleted accessory genes. J Gen Virol 80:1591-1598

    PubMed  CAS  Google Scholar 

  • Schmidt M, Niewiesk S, Heeney J, Aguzzi A, Rethwilm A (1997) Mouse model to study the replication of primate foamy viruses. J Gen Virol 78:1929-1933

    PubMed  CAS  Google Scholar 

  • Schmidt M, Rethwilm A (1995) Replicating foamy virus-based vectors directing high level expression of foreign genes. Virology 210:167-178

    PubMed  CAS  Google Scholar 

  • Schnell T, Foley P, Wirth M, Munch J, Uberla K (2000) Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11:439-447

    PubMed  CAS  Google Scholar 

  • Schweizer M, Falcone V, Gange J, Turek R, Neumann-Haefelin D (1997) Simian foamy virus isolated from an accidentally infected human individual. J Virol 71:4821-4824

    PubMed  CAS  Google Scholar 

  • Schweizer M, Turek R, Hahn H, Schliephake A, Netzer KO, Eder G, Reinhardt M, Rethwilm A, Neumann-Haefelin D (1995) Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS Res Hum Retroviruses 11:161-170

    PubMed  CAS  Google Scholar 

  • Smith A (1999) Gene Therapy-where are we? Lancet 354:1-4

    CAS  Google Scholar 

  • Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA (1986) Role of the HTLV- III/LAV envelope in syncytium formation and cytopathicity. Nature 322:470-474

    PubMed  CAS  Google Scholar 

  • Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23:628-633

    PubMed  CAS  Google Scholar 

  • Springett GM, Moen RC, Anderson S, Blaese RM, Anderson WF (1989) Infection efficiency of T lymphocytes with amphotropic retroviral vectors is cell cycle dependent. J Virol 63:3865-3869

    PubMed  CAS  Google Scholar 

  • Tobaly-Tapiero J, Bittoun P, Neves M, Guillemin MC, Lecellier CH, Puvion-Dutilleul F, Gicquel B, Zientara S, Giron ML, de The H, Saib A (2000) Isolation and characterization of an equine foamy virus. J Virol 74:4064-4073

    PubMed  CAS  Google Scholar 

  • Tobaly-Tapiero J, Kupiec J-J, Santillana-Hayat M, Canivet M, Peries J, Emanoil-Ravier R (1991) Further characterization of the gapped DNA intermediates of human spumavirus: evidence for a dual initiation of plus-stranded DNA synthesis. J Gen Virol 72:605-608

    PubMed  CAS  Google Scholar 

  • Trobridge GD, Russel DW (1998) Helper-free foamy virus vectors. Hum Gene Ther 9:2517-2525

    PubMed  CAS  Google Scholar 

  • Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW (2002a) Improved foamy virus vectors with minimal viral sequences. Mol Ther 6:321-328

    PubMed  CAS  Google Scholar 

  • Trobridge G, Vassilopoulos G, Josephson N, Russell DW (2002b) Gene transfer with foamy virus vectors. Methods Enzymol 346:628-648

    PubMed  CAS  Google Scholar 

  • Varmus H (1988) Retroviruses. Science 240:1427-1435

    PubMed  CAS  Google Scholar 

  • Vassilopoulos G, Trobridge G, Josephson NC, Russell DW (2001) Gene transfer into murine hematopoietic stem cells with helper free foamy virus vectors. Blood 98:604-609

    PubMed  CAS  Google Scholar 

  • Venkatesh LK, Theodorakis PA, Chinnadurai G (1991) Distinct cis-acting regions in the U3 regulate trans-activation of the human spumaretrovirus long terminal repeat by the viral bell gene product. Nucl Acids Res 19:3661-3666

    PubMed  CAS  Google Scholar 

  • von-Laer D, Neumann-Haefelin D, Heeney J, Schweizer M (1996) Lymphocytes are the major reservoir for foamy viruses in peripheral blood. Virology 221:240-244

    PubMed  CAS  Google Scholar 

  • Weiss RA (1988) Foamy retroviruses. A virus in search of a disease. Nature 333:497-8

    PubMed  CAS  Google Scholar 

  • Winkler I, Bodem J, Haas L, Zemba M, Delius H, Flower R, Flügel RM, Löchelt M (1997) Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. J Virol 71:6727-6741

    PubMed  CAS  Google Scholar 

  • Wolfe D, Goins WF, Yamada M, Moriuchi S, Krisky DM, Oligino TJ, Marconi PC, Fink DJ, Glorioso JC (1999) Engineering herpes simplex virus vectors for CNS applications. Exp Neurol 159:34-36

    PubMed  CAS  Google Scholar 

  • Wu M, Chan S, Yanchis T, Mergia A (1998) Cis-acting sequences required for simian foamy virus type 1 (SFV-1) vectors. J Virol 72:3451-3454

    PubMed  CAS  Google Scholar 

  • Wu M, Mergia A (1999) Packaging cell lines for simian foam virus type 1 (SFV-1) vectors. J Virol 73:4498-4501

    PubMed  CAS  Google Scholar 

  • Wu N, Ataai M (2000) Production of viral vectors for Gene Ther applications. Curr Opin Biotech 11:205-208

    PubMed  CAS  Google Scholar 

  • Yee JK, Friedmann T, Burns JC (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 43:99-112

    PubMed  CAS  Google Scholar 

  • Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T (1994) A general method for the generation of high-titer, pantropic retroviral vectors• highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 91:9564-9568

    PubMed  CAS  Google Scholar 

  • Yu H, Rabson AB, Kaul M, Ron Y, Dougherty JP (1996) Inducible human immunodeficiency virus type 1 packaging cell lines. J Virol 70:4530-4537

    PubMed  CAS  Google Scholar 

  • Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579-1582

    PubMed  CAS  Google Scholar 

  • Yu SF, Linial ML (1993) Analysis of the role of the bel and bet open reading frames of human foamy virus by using a new quantitative assay. J Virol 67:6618-6624

    PubMed  CAS  Google Scholar 

  • Yu SF, Sullivan MD, Linial ML (1999) Evidence that the human foamy virus genome is DNA. J Virol 73:1565-1572

    PubMed  CAS  Google Scholar 

  • Zennou V, Petit C, Guetard D, Nehrbass U, Montgnier L, Chameau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173-185

    PubMed  CAS  Google Scholar 

  • Zucali JR, Ciccarone T, Kelley V, Johnson CM, Mergia A (2002) Transduction of umbilical cord blood CD34+ NOD/SCID repopulating cells by simian foamy virus type 1 (SFV-1) vector. Virology 302:229-235

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mergia, A., Heinkelein, M. (2003). Foamy Virus Vectors. In: Rethwilm, A. (eds) Foamy Viruses. Current Topics in Microbiology and Immunology, vol 277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55701-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55701-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62934-1

  • Online ISBN: 978-3-642-55701-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics