Foamy Viruses pp 111-129 | Cite as

The Foamy Virus Envelope Glycoproteins

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 277)


The main functions of retroviral glycoproteins are recognition and binding to the cellular virus receptor as well as fusion of viral and cellular lipid membranes to release the viral particle into the cytoplasm of the host cell. Foamy viruses (FVs) are a special group of retroviruses with a very broad host range that use a currently unknown cellular receptor for entry. Nevertheless, many functions of the FV envelope glycoproteins in the viral replication cycle have been characterized in detail over the last years. Several unique features not found for any other retro-virus were identified.


Leader Peptide Fusion Peptide Foamy Virus Prototype Foamy Virus Human Foamy Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin DN, Linial ML (1998) The roles of Pol and Env in the assembly pathway of human foamy virus. J Virol 72:3658–3665PubMedGoogle Scholar
  2. Bansal A, Shaw KL, Edwards BH, Goepfert PA, Mulligan MJ (2000) Characterization of the R572T point mutant of a putative cleavage site in human foamy virus Env. J Virol 74:2949–2954PubMedCrossRefGoogle Scholar
  3. Bodem J, Löchelt M, Delius H, Fl¨¹gel RM (1998) Detection of subgenomic cDNAs and mapping of feline foamy virus mRNAs reveals complex patterns of transcription. Virology 244:417–426PubMedCrossRefGoogle Scholar
  4. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43PubMedCrossRefGoogle Scholar
  5. Carr CM, Chaudhry C, Kim PS (1997) Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci USA 94:14306–14313PubMedCrossRefGoogle Scholar
  6. Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832PubMedCrossRefGoogle Scholar
  7. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273PubMedCrossRefGoogle Scholar
  8. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666PubMedCrossRefGoogle Scholar
  9. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673PubMedCrossRefGoogle Scholar
  10. Epand RM, Epand RF (2001) Factors contributing to the fusogenic potency of foamy virus. Biochem Biophys Res Commun 284:870–874PubMedCrossRefGoogle Scholar
  11. Fass D, Davey RA, Hamson CA, Kim PS, Cunningham JM, Berger JM (1997) Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 277:1662–1666PubMedCrossRefGoogle Scholar
  12. Fass D, Harrison SC, Kim PS (1996) Retrovirus envelope domain at 1.7 angstrom resolution. Nat Struct Biol 3:465–469PubMedCrossRefGoogle Scholar
  13. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877PubMedCrossRefGoogle Scholar
  14. Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Muller JG, Rethwilm A (1998) Foamy virus particle formation. J Virol 72:1610–1615PubMedGoogle Scholar
  15. Flint S, Enquist L, Krug R, Racaniello V, Skalka A (2000) Principles of virology: molecular biology, pathogenesis, and control. American Society for Microbiology, Washington DC.Google Scholar
  16. Fl¨¹gel RM, Rethwilm A, Maurer B, Darai G (1987) Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO J 6:2077–2084Google Scholar
  17. Giron ML, de The H, Saïb A (1998) An evolutionarily conserved splice generates a secreted env-Bet fusion protein during human foamy virus infection. J Virol 72:4906–4910PubMedGoogle Scholar
  18. Giron ML, Rozain F, Debons Guillemin MC, Canivet M, Perks J, Emanoil Ravier R (1993) Human foamy virus polypeptides: identification of env and bel gene products. J Virol 67:3596–3600PubMedGoogle Scholar
  19. Goepfert PA, Shaw K, Wang G, Bansal A, Edwards BH, Mulligan MJ (1999) An endoplasmic reticulum retrieval signal partitions human foamy virus maturation to intracytoplasmic membranes. J Virol 73:7210–7217PubMedGoogle Scholar
  20. Goepfert PA, Shaw KL, Ritter GD Jr., Mulligan MJ (1997) A sorting motif localizes the foamy virus glycoprotein to the endoplasmic reticulum. J Virol 71:778–784Google Scholar
  21. Goepfert PA, Wang G, Mulligan MJ (1995) Identification of an ER retrieval signal in a retroviral glycoprotein. Cell 82:543–544PubMedCrossRefGoogle Scholar
  22. Hunter E (1997) Viral entry and receptors. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  23. Lindemann D, Bock M, Schweizer M, Rethwilm A (1997) Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. J Virol 71:4815–4820PubMedGoogle Scholar
  24. Lindemann D, Pietschmann T, Picard-Maureau M, Berg A, Heinkelein M, Thurow J, Knaus P, Zentgraf H, Rethwilm A (2001) A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 75:5762–5771PubMedCrossRefGoogle Scholar
  25. Lindemann D, Rethwilm A (1998) Characterization of a human foamy virus 170-kilodalton Env-Bet fusion protein generated by alternative splicing. J Virol 72:4088–4094Google Scholar
  26. Löchelt M, Fl¨¹gel RM, Aboud M (1994) The human foamy virus internal promoter directs the expression of the functional Bel 1 transactivator and Bet protein early after infection. J Virol 68:638–645PubMedGoogle Scholar
  27. Mergia A (1994) Simian foamy virus type 1 contains a second promoter located at the 3’ end of the env gene. Virology 199:219–222PubMedCrossRefGoogle Scholar
  28. Netzer KO, Rethwilm A, Maurer B, ter Meulen V (1990) Identification of the major immunogenic structural proteins of human foamy virus. J Gen Virol 71:12371241Google Scholar
  29. Peisajovich SG, Shai Y (2002) High similarity between reverse-oriented sequences from HIV and foamy virus envelope glycoproteins. AIDS Res Hum Retroviruses 18:309–312PubMedCrossRefGoogle Scholar
  30. Pietschmann T, Heinkelein M, Heldmann M, Zentgraf H, Rethwilm A, Lindemann D (1999) Foamy virus capsids require the cognate envelope protein for particle export. J Virol 73:2613–2621PubMedGoogle Scholar
  31. Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D (2000) An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74:4474–4482PubMedCrossRefGoogle Scholar
  32. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Coltman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725PubMedCrossRefGoogle Scholar
  33. Shaw KL, Lindemann D, Mulligan MJ, Goepfert PA (2003) Foamy virus envelope gly-coprotein is sufficient for particle budding and release. J Virol 77: (in press)Google Scholar
  34. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69.531–569PubMedCrossRefGoogle Scholar
  35. Swanstrom R, Wills J (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH and Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  36. Tobaly-Tapiero J, Bittoun P, Neves M, Guillemin MC, Lecellier CH, Puvion-Dutilleul F, Gicquel B, Zientara S, Giron ML, de The H, Saib A (2000) Isolation and characterization of an equine foamy virus. J Virol 74:4064–4073PubMedCrossRefGoogle Scholar
  37. Wang G, Mulligan MJ (1999) Comparative sequence analysis and predictions for the envelope glycoproteins of foamy viruses. J Gen Virol 80:245–254PubMedGoogle Scholar
  38. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430PubMedCrossRefGoogle Scholar
  39. Wilk T, de Haas F, Wagner A, Rutten T, Fuller S, Fl¨¹gel RM, Löchelt M (2000) The intact retroviral Env glycoprotein of human foamy virus is a trimer. J Virol 74:2885–2887PubMedCrossRefGoogle Scholar
  40. Wilk T, Geiselhart V, Frech M, Fuller SD, Fl¨¹gel RM, Löchelt M (2001) Specific interaction of a novel foamy virus env leader protein with the n-terminal gag domain. J Virol 75:7995–8007PubMedCrossRefGoogle Scholar
  41. Zemba M, Wilk T, Rutten T, Wagner A, Flugel RM, Lochelt M (1998) The carboxyterminal p3 gag domain of the human foamy virus gag precursor is required for efficient virus infectivity. Virology 247:7–13PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für Virologie, Medizinische Fakultät Carl-Gustav-CarusTechnische Universität DresdenDresdenGermany
  2. 2.Division of Infectious Diseases, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations