The Replication Strategy of Foamy Viruses

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 277)


The replication strategy of foamy viruses diverges in many aspects from what is commonly accepted as the rules of retroviral replication. Although many questions on the details of the replication pathway are still unanswered, it appears that foamy viruses have adopted a strategy which functionally bridges the retroviral and the hepadnaviral replication pathways. A number of experimental findings in favour of the view that foamy viruses are reverse transcribing DNA viruses which integrate into the host cell genome are discussed.


Human Immunodeficiency Virus Type Long Terminal Repeat Replication Strategy Foamy Virus Prototypic Foamy Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alke A, Schwantes A, Kido K, Flötenmeyer M, Flügel RM, Löchelt M (2001) The bet gene of feline foamy virus is required for virus replication. Virology 287:310–320PubMedCrossRefGoogle Scholar
  2. Baldwin DN, Linial ML (1998) The roles of pol and env in the assembly pathway of human foamy virus. J Virol 72:3658–3665PubMedGoogle Scholar
  3. Baldwin DN, Linial ML (1999) Proteolytic activity, the carboxy terminus of gag, and the primer binding site are not required for pol incorporation into foamy virus particles. J Virol 73:6387–6393PubMedGoogle Scholar
  4. Bansal A, Shaw KL, Edwards BH, Goepfert PA, Mulligan MJ (2000) Characterization of the R527T point mutant of a putative cleavage site in human foamy virus env. J Virol 74:2949–2954PubMedCrossRefGoogle Scholar
  5. Baunach G, Maurer B, Hahn H, Kranz M, Rethwilm A (1993) Functional analysis of human foamy virus accessory reading frames. J Virol 67:5411–5418PubMedGoogle Scholar
  6. Bock M, Heinkelein M, Lindemann D, Rethwilm A (1998) Cells expressing the human foamy virus (HFV) accessory bet protein are resistant to productive HFV superinfection. Virology 250:194–204PubMedCrossRefGoogle Scholar
  7. Bodem J, Zemba M, Flügel RM (1998) Nuclear localization of the functional bel 1 transactivator but not of the gag proteins of the feline foamy virus. Virology 251:22–27PubMedCrossRefGoogle Scholar
  8. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500PubMedCrossRefGoogle Scholar
  9. Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  10. Brown PO (1997) Integration. In: Coffin JM, Hughes SH, Varmus HE (eds) Retro-viruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  11. Bushman F (2002). Lateral DNA transfer. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  12. Cain D, Erlwein O, Grigg A, Russell RA, McClure MO (2001) Palindromic sequence plays a critical role in human foamy virus dimerization. J Virol 75:3731–3739PubMedCrossRefGoogle Scholar
  13. Charneau P, Clavel F (1991) A single stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J Virol 65:2415–2421PubMedGoogle Scholar
  14. Charneau P, Alizon M, Clavel F (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 66:2814–2820PubMedGoogle Scholar
  15. Charneau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241:651–662PubMedCrossRefGoogle Scholar
  16. Colicelli J, Goff SP (1985) Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integrations site. Cell 42:573–580PubMedCrossRefGoogle Scholar
  17. Condit RC (2001) Principles of virology. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  18. Ellison V, Brown PO (1994) A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proc Nail Acad Sci (USA) 91:7316–7320CrossRefGoogle Scholar
  19. Enssle J, Fischer N, Moebes A, Mauer B, Smola U, Rethwilm A (1997) Carboxy-terminal cleavage of the human foamy virus gag precursor molecule is an essential step in the viral life cycle. J Virol 71:7312–7317PubMedGoogle Scholar
  20. Enssle J, Moebes A, Heinkelein M, Panhuysen M, Mauer B, Schweizer M, NeumannHaefelin D, Rethwilm A (1999) An active human foamy virus integrase is required for viral replication. J Gen Virol 80:1445–1452PubMedGoogle Scholar
  21. Erlwein O, Cain D, Fischer N, Rethwilm A, McClure MO (1997) Identification of sites that act together to direct dimerization of human foamy virus RNA in vitro. Virology 229:251–258PubMedCrossRefGoogle Scholar
  22. Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Müller JG, Rethwilm A (1998) Foamy virus particle formation. J Virol 72:1610–1615PubMedGoogle Scholar
  23. Falcone V, Leupold J, Clotten J, Urbanyi E, Herchenröder O, Spatz W, Volk B, Böhm J, Toniolo A, Neumann-Haefelin D, Schweizer M (1999) Sites of simian foamy virus persistence in naturally infected African green monkeys: latent provirus is ubiquitous whereas viral replication is restricted to the oral mucosa. Virology 257:7–14PubMedCrossRefGoogle Scholar
  24. Ganem D, Schneider RJ (2001) Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  25. Green WC, Peterlin BM (2002) Charting HIV’s remarkable voyage through the cell: basic science as a passport to future therapy. Nature Med 8:673–680CrossRefGoogle Scholar
  26. Guo J, Wu T, Kane BF, Johnson DG, Henderson LE, Gorelick RJ, Levin JG (2002) Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic avid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J Virol 76:4370–4378PubMedCrossRefGoogle Scholar
  27. He F, Sun JD, Garrett ED, Cullen BR (1993) Functional organization of the bel-1 trans activator of human foamy virus. J Virol 67:1896–190.PubMedGoogle Scholar
  28. Heidmann O, Heidmann T (1991) Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64:159–170PubMedCrossRefGoogle Scholar
  29. Heidmann T, Heidmann O, Nicolas J-F (1988) An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci (USA) 85:2219–2223CrossRefGoogle Scholar
  30. Heinkelein M, Pietschmann T, Jármy G, Dressler M, Imrich H, Thurow J, Lindemann D, Bock M, Moebes A, Roy J, Herchenröder O, Rethwilm A (2000) Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 19:3436–3445PubMedCrossRefGoogle Scholar
  31. Hruska JF, Takemoto KK (1975) Biochemical properties of a hamster syncytiumforming (“foamy’) virus. J Nat Cancer Inst 54:601–605PubMedGoogle Scholar
  32. Huang AS, Baltimore D (1977) Defective interfering animal viruses. In: Fraenkel- Conrat H, Wagner RR (eds) Comprehensive Virology. Plenum Press, New York.Google Scholar
  33. Imrich H, Heinkelein M, Herchenröder O, Rethwilm A (2000) Primate foamy virus pol proteins are imported into the nucleus. J Gen Virol 81:2941–2947PubMedGoogle Scholar
  34. Jordan IK, Matyunina LV, McDonald JF (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposons. Proc Nail Acad Sci USA 96:12621–12625CrossRefGoogle Scholar
  35. Jung A, Maier R, Vartanian J-P, Bocharov G, Jungs V, Fischer U, Meese E, Wain-Hobson S, Meyerhans A (2002) Multiply infected spleen cells in HIV patients. Nature 418:144PubMedCrossRefGoogle Scholar
  36. Juretzek T, Holm T, Gärtner K, Kanzler S, Herchenröder O, Rammling M, Heinkelein M, Rethwilm A (2003) Foamy virus integration. (manuscript in preparation)Google Scholar
  37. Kupiec JJ, Tobaly-Tapiero J, Canivet M, Santillana-Hayat M, Flügel RM, Périès J, Emanoil-Ravier R (1988) Evidence for a gapped linear duplex DNA intermediate in the replicative cycle of human and simian spumaviruses. Nucleic Acids Res 16:9557–9565PubMedCrossRefGoogle Scholar
  38. Lecellier C-H, Vermeulen W, Bachelerie F, Giron M-L, Saib A (2002) Intra-and inter-cellular trafficking of the foamy virus auxilliary bet protein. J Virol 76:3388–3394PubMedCrossRefGoogle Scholar
  39. Linial ML (1999) Foamy viruses are unconventional retroviruses. J Virol 73:1747–1755PubMedGoogle Scholar
  40. Löchelt M, Flügel RM, Aboud M (1994) The human foamy virus internal promoter directs the expression of the functional bel 1 transactivator and bet protein early after infection. J Virol 68:638–645PubMedGoogle Scholar
  41. Loh PC, Matsuura FS (1981) The RNA of human syncytial-forming (foamy) virus. Arch Virol 68:53–58PubMedCrossRefGoogle Scholar
  42. Lori F, Veronese FDM, Vico ALD, Lusso p, M. S. Reitz J, Gallo RC (1992) Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol 66:5067–5074PubMedGoogle Scholar
  43. Maurer B, Bannert H, Darai G, Flügel RM (1988) Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol 62:1590–1597PubMedGoogle Scholar
  44. Meiering CD, Comstock KE, Linial ML (2000) Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J Virol 74:1718–1726PubMedCrossRefGoogle Scholar
  45. Meiering CD, Linial ML (2002) Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci USA 99:15130–15135PubMedCrossRefGoogle Scholar
  46. Mergia A, Luciw PA (1991) Replication and regulation of primate foamy viruses. Virology 184:475–482PubMedCrossRefGoogle Scholar
  47. Mergia A, Shaw KES, Pratt-Lowe E, Barry PA, Luciw PA (1991) Identification of the simian foamy virus transcriptional transactivator gene (taf). J Virol 65:2903–2909PubMedGoogle Scholar
  48. Miller RH, Robinson WS (1986) Common evolutionary origin of hepatitis B virus and retrovirus. Proc Nail Acad Sci USA 83:2531–2535CrossRefGoogle Scholar
  49. Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A (1997) Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 71:7305–7311PubMedGoogle Scholar
  50. Mules EH, Uzun O, Gabriel A (1998) In vivo Tyl reverse transcription can generate replication intermediates with untidy ends. J Virol 72:6490–6503PubMedGoogle Scholar
  51. Muranyi W, and Flügel RM (1991) Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J Virol 65:727–735PubMedGoogle Scholar
  52. Nassal M, Schaller H (1993) Hepatitis B virus replication. Trends Microbiol 1:221–228PubMedCrossRefGoogle Scholar
  53. Netzer KO, Rethwilm A, Maurer B, ter Meulen V (1990) Identification of the major immunogenic structural proteins of human foamy virus. J Gen Virol 71:1237–1241PubMedCrossRefGoogle Scholar
  54. Neves M, Périès J, Saib A (1998) Study of human foamy virus proviral integration in chronically infected murine cells. Res Virol 149:393–401PubMedCrossRefGoogle Scholar
  55. Pahl A, Flügel RM (1993) Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J Virol 67:5426–5434PubMedGoogle Scholar
  56. Pahl A, Flügel RM (1995) Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. J Biol Chem 270:2957–2966PubMedCrossRefGoogle Scholar
  57. Pfrepper K-I, Löchelt M, Rackwitz H-R, Schnölzer M, Heid H, Flügel RM (1999) Molecular characterization of proteolytic processing of the gag proteins of human spumavirus. J Virol 73:7907–7911PubMedGoogle Scholar
  58. Pietschmann T, Heinkelein M, Heldmann MA, Zentgraf H, Rethwilm A, Lindemann D (1999) Foamy virus capsids require the cognate envelope protein for particle export. J Virol 73:2613–2621PubMedGoogle Scholar
  59. Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D (2000) An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74:4474–4482PubMedCrossRefGoogle Scholar
  60. Rethwilm A, Darai G, Rösen A, Flügel RM (1987) Molecular cloning of the genome of human spumaretrovirus. Gene 59:19–28PubMedCrossRefGoogle Scholar
  61. Roy J, Rudolph W, Juretzek T, Gärtner K, Bock M, Herchenröder O, Lindemann D, Heinkelein M, Rethwilm A (2003) Feline foamy virus genome and replication strategy. (submitted)Google Scholar
  62. Saib A, Périès J, de Thé H (1993) A defective human foamy provirus generated by pregenome splicing. EMBO J 12:4439–4444PubMedGoogle Scholar
  63. Saib A, Koken MHM, van der Spek P, Périès J, de Thé H (1995) Involvement of a spliced and defective human foamy virus in the establishment of chronic foamy virus infection. J Virol 69:5261–5268PubMedGoogle Scholar
  64. Saib A, Neves M, Giron M-L, Guillemin M-L, Valla J, Périès J, Canivet M (1997) Long term persistent infection of domestic rabbits by the human foamy virus. Virology 228:263–268PubMedCrossRefGoogle Scholar
  65. Schliephake AW, Rethwilm A (1994) Nuclear localization of foamy virus gag precursor protein. J Virol 68:4946–4954PubMedGoogle Scholar
  66. Schweizer M, Fleps U, Jackie A, Renne R, Turek R, Neumann-Haefelin D (1993) Simian foamy virus type 3 (SFV-3) in latently infected Vero cells: reactivation by demethylation of proviral DNA. Virology 192:663–666PubMedCrossRefGoogle Scholar
  67. Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  68. Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  69. Temin HM (1988) Mechanism of cell killing/cytopathic effects by nonhuman retro-viruses. Rev Infect Dis 10:399–405PubMedCrossRefGoogle Scholar
  70. Tobaly-Tapiero J, Kupiec JJ, Santillana-Hayat M, Canicet M, Périès J, Emanoil-Ravier R (1991) Further characterization of the gapped DNA intermediates of human spumavirus: evidence for a dual initiation of plus-strand DNA synthesis. J Gen Virol 72:605–608PubMedCrossRefGoogle Scholar
  71. Trono D (1992) Partial reverse transcripts in virions from human immunodeficiency and murine leukemia virus. J Virol 66:4893–4900PubMedGoogle Scholar
  72. Vogt PK (1997a) Historical introduction to the general properties of retroviruses. In: Coffin JM, Hughes SH and Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  73. Vogt VM (1997b) Retroviral virions and genomes. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  74. Whitwam T, Peretz M, Poeschla E (2001) Identification of a central DNA flap in feline immunodeficiency virus. J Virol 75:9407–9414PubMedCrossRefGoogle Scholar
  75. Wilkinson DA, Mager DL, Leong J-A (1994) Endogenous human retroviruses. In: Levy JA (ed) The Retroviridae. Plenum Press, New YorkGoogle Scholar
  76. Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996a) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582CrossRefGoogle Scholar
  77. Yu SF, Edelmann K, Strong RK, Moebes A, Rethwilm A, Linial ML (1996b) The carboxy-terminus of the human foamy virus gag protein contains separable nucleic acid binding and nuclear transport domains. J Virol 70:8255–8262Google Scholar
  78. Yu SF, Sullivan MD, Linial ML (1999) Evidence that the human foamy virus genome is DNA. J Virol 73:1565–1572PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”Technische Universität DresdenDresdenGermany

Personalised recommendations