Skip to main content

The Replication Strategy of Foamy Viruses

  • Chapter
Foamy Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 277))

Abstract

The replication strategy of foamy viruses diverges in many aspects from what is commonly accepted as the rules of retroviral replication. Although many questions on the details of the replication pathway are still unanswered, it appears that foamy viruses have adopted a strategy which functionally bridges the retroviral and the hepadnaviral replication pathways. A number of experimental findings in favour of the view that foamy viruses are reverse transcribing DNA viruses which integrate into the host cell genome are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alke A, Schwantes A, Kido K, Flötenmeyer M, Flügel RM, Löchelt M (2001) The bet gene of feline foamy virus is required for virus replication. Virology 287:310–320

    Article  PubMed  CAS  Google Scholar 

  • Baldwin DN, Linial ML (1998) The roles of pol and env in the assembly pathway of human foamy virus. J Virol 72:3658–3665

    PubMed  CAS  Google Scholar 

  • Baldwin DN, Linial ML (1999) Proteolytic activity, the carboxy terminus of gag, and the primer binding site are not required for pol incorporation into foamy virus particles. J Virol 73:6387–6393

    PubMed  CAS  Google Scholar 

  • Bansal A, Shaw KL, Edwards BH, Goepfert PA, Mulligan MJ (2000) Characterization of the R527T point mutant of a putative cleavage site in human foamy virus env. J Virol 74:2949–2954

    Article  PubMed  CAS  Google Scholar 

  • Baunach G, Maurer B, Hahn H, Kranz M, Rethwilm A (1993) Functional analysis of human foamy virus accessory reading frames. J Virol 67:5411–5418

    PubMed  CAS  Google Scholar 

  • Bock M, Heinkelein M, Lindemann D, Rethwilm A (1998) Cells expressing the human foamy virus (HFV) accessory bet protein are resistant to productive HFV superinfection. Virology 250:194–204

    Article  PubMed  CAS  Google Scholar 

  • Bodem J, Zemba M, Flügel RM (1998) Nuclear localization of the functional bel 1 transactivator but not of the gag proteins of the feline foamy virus. Virology 251:22–27

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Brown PO (1997) Integration. In: Coffin JM, Hughes SH, Varmus HE (eds) Retro-viruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Bushman F (2002). Lateral DNA transfer. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Cain D, Erlwein O, Grigg A, Russell RA, McClure MO (2001) Palindromic sequence plays a critical role in human foamy virus dimerization. J Virol 75:3731–3739

    Article  PubMed  CAS  Google Scholar 

  • Charneau P, Clavel F (1991) A single stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J Virol 65:2415–2421

    PubMed  CAS  Google Scholar 

  • Charneau P, Alizon M, Clavel F (1992) A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 66:2814–2820

    PubMed  CAS  Google Scholar 

  • Charneau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241:651–662

    Article  PubMed  CAS  Google Scholar 

  • Colicelli J, Goff SP (1985) Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integrations site. Cell 42:573–580

    Article  PubMed  CAS  Google Scholar 

  • Condit RC (2001) Principles of virology. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  • Ellison V, Brown PO (1994) A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proc Nail Acad Sci (USA) 91:7316–7320

    Article  CAS  Google Scholar 

  • Enssle J, Fischer N, Moebes A, Mauer B, Smola U, Rethwilm A (1997) Carboxy-terminal cleavage of the human foamy virus gag precursor molecule is an essential step in the viral life cycle. J Virol 71:7312–7317

    PubMed  CAS  Google Scholar 

  • Enssle J, Moebes A, Heinkelein M, Panhuysen M, Mauer B, Schweizer M, NeumannHaefelin D, Rethwilm A (1999) An active human foamy virus integrase is required for viral replication. J Gen Virol 80:1445–1452

    PubMed  CAS  Google Scholar 

  • Erlwein O, Cain D, Fischer N, Rethwilm A, McClure MO (1997) Identification of sites that act together to direct dimerization of human foamy virus RNA in vitro. Virology 229:251–258

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Müller JG, Rethwilm A (1998) Foamy virus particle formation. J Virol 72:1610–1615

    PubMed  CAS  Google Scholar 

  • Falcone V, Leupold J, Clotten J, Urbanyi E, Herchenröder O, Spatz W, Volk B, Böhm J, Toniolo A, Neumann-Haefelin D, Schweizer M (1999) Sites of simian foamy virus persistence in naturally infected African green monkeys: latent provirus is ubiquitous whereas viral replication is restricted to the oral mucosa. Virology 257:7–14

    Article  PubMed  CAS  Google Scholar 

  • Ganem D, Schneider RJ (2001) Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  • Green WC, Peterlin BM (2002) Charting HIV’s remarkable voyage through the cell: basic science as a passport to future therapy. Nature Med 8:673–680

    Article  Google Scholar 

  • Guo J, Wu T, Kane BF, Johnson DG, Henderson LE, Gorelick RJ, Levin JG (2002) Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic avid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J Virol 76:4370–4378

    Article  PubMed  CAS  Google Scholar 

  • He F, Sun JD, Garrett ED, Cullen BR (1993) Functional organization of the bel-1 trans activator of human foamy virus. J Virol 67:1896–190.

    PubMed  CAS  Google Scholar 

  • Heidmann O, Heidmann T (1991) Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64:159–170

    Article  PubMed  CAS  Google Scholar 

  • Heidmann T, Heidmann O, Nicolas J-F (1988) An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci (USA) 85:2219–2223

    Article  CAS  Google Scholar 

  • Heinkelein M, Pietschmann T, Jármy G, Dressler M, Imrich H, Thurow J, Lindemann D, Bock M, Moebes A, Roy J, Herchenröder O, Rethwilm A (2000) Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 19:3436–3445

    Article  PubMed  CAS  Google Scholar 

  • Hruska JF, Takemoto KK (1975) Biochemical properties of a hamster syncytiumforming (“foamy’) virus. J Nat Cancer Inst 54:601–605

    PubMed  CAS  Google Scholar 

  • Huang AS, Baltimore D (1977) Defective interfering animal viruses. In: Fraenkel- Conrat H, Wagner RR (eds) Comprehensive Virology. Plenum Press, New York.

    Google Scholar 

  • Imrich H, Heinkelein M, Herchenröder O, Rethwilm A (2000) Primate foamy virus pol proteins are imported into the nucleus. J Gen Virol 81:2941–2947

    PubMed  CAS  Google Scholar 

  • Jordan IK, Matyunina LV, McDonald JF (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposons. Proc Nail Acad Sci USA 96:12621–12625

    Article  CAS  Google Scholar 

  • Jung A, Maier R, Vartanian J-P, Bocharov G, Jungs V, Fischer U, Meese E, Wain-Hobson S, Meyerhans A (2002) Multiply infected spleen cells in HIV patients. Nature 418:144

    Article  PubMed  CAS  Google Scholar 

  • Juretzek T, Holm T, Gärtner K, Kanzler S, Herchenröder O, Rammling M, Heinkelein M, Rethwilm A (2003) Foamy virus integration. (manuscript in preparation)

    Google Scholar 

  • Kupiec JJ, Tobaly-Tapiero J, Canivet M, Santillana-Hayat M, Flügel RM, Périès J, Emanoil-Ravier R (1988) Evidence for a gapped linear duplex DNA intermediate in the replicative cycle of human and simian spumaviruses. Nucleic Acids Res 16:9557–9565

    Article  PubMed  CAS  Google Scholar 

  • Lecellier C-H, Vermeulen W, Bachelerie F, Giron M-L, Saib A (2002) Intra-and inter-cellular trafficking of the foamy virus auxilliary bet protein. J Virol 76:3388–3394

    Article  PubMed  CAS  Google Scholar 

  • Linial ML (1999) Foamy viruses are unconventional retroviruses. J Virol 73:1747–1755

    PubMed  CAS  Google Scholar 

  • Löchelt M, Flügel RM, Aboud M (1994) The human foamy virus internal promoter directs the expression of the functional bel 1 transactivator and bet protein early after infection. J Virol 68:638–645

    PubMed  Google Scholar 

  • Loh PC, Matsuura FS (1981) The RNA of human syncytial-forming (foamy) virus. Arch Virol 68:53–58

    Article  PubMed  CAS  Google Scholar 

  • Lori F, Veronese FDM, Vico ALD, Lusso p, M. S. Reitz J, Gallo RC (1992) Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol 66:5067–5074

    PubMed  CAS  Google Scholar 

  • Maurer B, Bannert H, Darai G, Flügel RM (1988) Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol 62:1590–1597

    PubMed  CAS  Google Scholar 

  • Meiering CD, Comstock KE, Linial ML (2000) Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J Virol 74:1718–1726

    Article  PubMed  CAS  Google Scholar 

  • Meiering CD, Linial ML (2002) Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci USA 99:15130–15135

    Article  PubMed  CAS  Google Scholar 

  • Mergia A, Luciw PA (1991) Replication and regulation of primate foamy viruses. Virology 184:475–482

    Article  PubMed  CAS  Google Scholar 

  • Mergia A, Shaw KES, Pratt-Lowe E, Barry PA, Luciw PA (1991) Identification of the simian foamy virus transcriptional transactivator gene (taf). J Virol 65:2903–2909

    PubMed  CAS  Google Scholar 

  • Miller RH, Robinson WS (1986) Common evolutionary origin of hepatitis B virus and retrovirus. Proc Nail Acad Sci USA 83:2531–2535

    Article  CAS  Google Scholar 

  • Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A (1997) Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 71:7305–7311

    PubMed  CAS  Google Scholar 

  • Mules EH, Uzun O, Gabriel A (1998) In vivo Tyl reverse transcription can generate replication intermediates with untidy ends. J Virol 72:6490–6503

    PubMed  CAS  Google Scholar 

  • Muranyi W, and Flügel RM (1991) Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J Virol 65:727–735

    PubMed  CAS  Google Scholar 

  • Nassal M, Schaller H (1993) Hepatitis B virus replication. Trends Microbiol 1:221–228

    Article  PubMed  CAS  Google Scholar 

  • Netzer KO, Rethwilm A, Maurer B, ter Meulen V (1990) Identification of the major immunogenic structural proteins of human foamy virus. J Gen Virol 71:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Neves M, Périès J, Saib A (1998) Study of human foamy virus proviral integration in chronically infected murine cells. Res Virol 149:393–401

    Article  PubMed  CAS  Google Scholar 

  • Pahl A, Flügel RM (1993) Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J Virol 67:5426–5434

    PubMed  CAS  Google Scholar 

  • Pahl A, Flügel RM (1995) Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. J Biol Chem 270:2957–2966

    Article  PubMed  CAS  Google Scholar 

  • Pfrepper K-I, Löchelt M, Rackwitz H-R, Schnölzer M, Heid H, Flügel RM (1999) Molecular characterization of proteolytic processing of the gag proteins of human spumavirus. J Virol 73:7907–7911

    PubMed  CAS  Google Scholar 

  • Pietschmann T, Heinkelein M, Heldmann MA, Zentgraf H, Rethwilm A, Lindemann D (1999) Foamy virus capsids require the cognate envelope protein for particle export. J Virol 73:2613–2621

    PubMed  CAS  Google Scholar 

  • Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D (2000) An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74:4474–4482

    Article  PubMed  CAS  Google Scholar 

  • Rethwilm A, Darai G, Rösen A, Flügel RM (1987) Molecular cloning of the genome of human spumaretrovirus. Gene 59:19–28

    Article  PubMed  CAS  Google Scholar 

  • Roy J, Rudolph W, Juretzek T, Gärtner K, Bock M, Herchenröder O, Lindemann D, Heinkelein M, Rethwilm A (2003) Feline foamy virus genome and replication strategy. (submitted)

    Google Scholar 

  • Saib A, Périès J, de Thé H (1993) A defective human foamy provirus generated by pregenome splicing. EMBO J 12:4439–4444

    PubMed  CAS  Google Scholar 

  • Saib A, Koken MHM, van der Spek P, Périès J, de Thé H (1995) Involvement of a spliced and defective human foamy virus in the establishment of chronic foamy virus infection. J Virol 69:5261–5268

    PubMed  CAS  Google Scholar 

  • Saib A, Neves M, Giron M-L, Guillemin M-L, Valla J, Périès J, Canivet M (1997) Long term persistent infection of domestic rabbits by the human foamy virus. Virology 228:263–268

    Article  PubMed  CAS  Google Scholar 

  • Schliephake AW, Rethwilm A (1994) Nuclear localization of foamy virus gag precursor protein. J Virol 68:4946–4954

    PubMed  CAS  Google Scholar 

  • Schweizer M, Fleps U, Jackie A, Renne R, Turek R, Neumann-Haefelin D (1993) Simian foamy virus type 3 (SFV-3) in latently infected Vero cells: reactivation by demethylation of proviral DNA. Virology 192:663–666

    Article  PubMed  CAS  Google Scholar 

  • Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Temin HM (1988) Mechanism of cell killing/cytopathic effects by nonhuman retro-viruses. Rev Infect Dis 10:399–405

    Article  PubMed  CAS  Google Scholar 

  • Tobaly-Tapiero J, Kupiec JJ, Santillana-Hayat M, Canicet M, Périès J, Emanoil-Ravier R (1991) Further characterization of the gapped DNA intermediates of human spumavirus: evidence for a dual initiation of plus-strand DNA synthesis. J Gen Virol 72:605–608

    Article  PubMed  CAS  Google Scholar 

  • Trono D (1992) Partial reverse transcripts in virions from human immunodeficiency and murine leukemia virus. J Virol 66:4893–4900

    PubMed  CAS  Google Scholar 

  • Vogt PK (1997a) Historical introduction to the general properties of retroviruses. In: Coffin JM, Hughes SH and Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Vogt VM (1997b) Retroviral virions and genomes. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Whitwam T, Peretz M, Poeschla E (2001) Identification of a central DNA flap in feline immunodeficiency virus. J Virol 75:9407–9414

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DA, Mager DL, Leong J-A (1994) Endogenous human retroviruses. In: Levy JA (ed) The Retroviridae. Plenum Press, New York

    Google Scholar 

  • Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996a) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582

    Article  CAS  Google Scholar 

  • Yu SF, Edelmann K, Strong RK, Moebes A, Rethwilm A, Linial ML (1996b) The carboxy-terminus of the human foamy virus gag protein contains separable nucleic acid binding and nuclear transport domains. J Virol 70:8255–8262

    CAS  Google Scholar 

  • Yu SF, Sullivan MD, Linial ML (1999) Evidence that the human foamy virus genome is DNA. J Virol 73:1565–1572

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rethwilm, A. (2003). The Replication Strategy of Foamy Viruses. In: Rethwilm, A. (eds) Foamy Viruses. Current Topics in Microbiology and Immunology, vol 277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55701-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55701-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62934-1

  • Online ISBN: 978-3-642-55701-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics