Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1043 Accesses

Zusammenfassung

Alle lebenden Zellen reagieren auf mechanische Reize. Sie regulieren z.B. ihren osmotischen Druck und brauchen hierzu mechanosensorische Informationen über die Dehnung der Zellmembran. Meldungen über den mechanischen Zustand liefern Ionenkanäle, deren Öffnungsgrad direkt von mechanischen Reizen gesteuert wird. Ein solcher mechanisch gesteuerter Ionenkanal, der Teil einer über alle Organismen verbreiteten Familie mechanisch sensitiver Ionenkanäle sein könnte, wurde im Bakterium Escherichia coli isoliert. Bei dem Nematoden Caenorhabditis elegans (wegen seiner Zellkonstanz ein beliebtes Modelltier der Genetiker und Entwicklungsbiologen) liefern die Berührungsempfindlichkeit des Hautmuskelschlauches sechs Neurone, deren Mechanosensitivität auf zwölf Genen beruht, wovon wenigstens drei an der Bildung mechanosensitiver Ionenkanäle mitwirken. Die Fasern dieser sechs Neurone verlaufen längs des Hautmuskelschlauches in einer Rinne der Unterhaut (Abb. 5.1a). Ein kollagenreicher Mantel koppelt die Nervenfaser mechanisch an die Haut und führt vermutlich den Reiz zu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Mechanische Sinne

  • Andres KH, Düring v M (1973) Morphology of cutaneous receptors. 3–28 in Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology. Springer, Heidelberg

    Google Scholar 

  • Barth FG (ed) (1985) Neurobiology of Arachnids. Springer, Heidelberg

    Google Scholar 

  • Barth FG (1993) Sensory guidance in spider pre-copulatory behaviour. Comp Biochem Physiol 104A:717–733

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988) Spiders of the genus Cupiennius. II. On the vibratory environment of a wandering spider. Oecologia 77: 194–201

    Google Scholar 

  • Barth FG, Blickhahn R (1984) Mechanreception. In: Bereiter-Hahn J et al. (eds) Biology of the integument. Springer, Heidelberg, Vol 1, S 554–582

    Google Scholar 

  • Barth FG, Humphrey JAC, Wastl U, Halbritter J, Brittinger W (1995) Dynamics of arthropods filiform hairs. III. Flow patterns related to air movement detection in a spider (Cupiennius salei). Phil Trans R Soc Lond B 347: 397–412

    Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of Arthropod Filiform Hairs II. Mechanical Properties of Spider Trichobothria (Cupiennius salei). Phil Trans R Soc Lond 340:445–461

    Google Scholar 

  • Baurecht D, Barth FG (1993) Vibratory communication in spiders. II. Representation of parameters contained in synthetic male courtship signals by female vibration receptor. J Comp Physiol A 173:309–320

    Google Scholar 

  • Breithaupt T, Schmitz B, Tautz J (1995) Hydrodynamic orientation of crayfish (Procambarus clarkii) to swimming fish prey. J Comp Physiol A 177:481–491

    PubMed  CAS  Google Scholar 

  • Brinkmann M, Oliver D, Thurm U (1996) Mechanoelectric transduction in nematocysts of a hydropolyp (Corynidae). J Comp Physiol A 178:125–138

    Google Scholar 

  • Brumberg JC, Pinto DJ, Simons DJ (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J Neurophysiol 76:130–140

    PubMed  CAS  Google Scholar 

  • Budelmann BU (1990) The Statocysts of Squid. In: Gilbert DL, Adelman WJ, Arnold JM (eds) Squid As Experimental Animals. Plenum Press, pp 421–439

    Google Scholar 

  • Budelmann BU (1992) Hearing in nonarthropod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 141–155

    Google Scholar 

  • Budelmann BU (1992) Hearing in Crustacea. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 131–139

    Google Scholar 

  • Budelmann BU (1994) Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Mar Fresh Behav Physiol 25:13–33

    Google Scholar 

  • Budelmann BU, Riese U, Bleckmann H (1991) Structure,function, biological significance of the Cuttlefish “Lateral Lines”. In: Boucaud-Camou E (ed) The Cuttlefish, pp 201–209

    Google Scholar 

  • Budelmann BU, Williamson R (1994) Directional sensitivity of hair cell afferents in the Octopus statocyst. J Exp Biol 187:245–259

    PubMed  CAS  Google Scholar 

  • CarveU GE, Simons DJ (1990) Biometric analysis of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648

    Google Scholar 

  • Catania KC (1995) Structure and innervation of the sensory organs on the snout of the star-nosed mole. J Comp Neurol 351:536–548

    PubMed  CAS  Google Scholar 

  • Catania KC, Kaas JH (1995) Organization of the somatosensory cortex of the star-nosed mole. J Comp Neurol 351:549–567

    PubMed  CAS  Google Scholar 

  • Claas B, Münz H (1996) Analysis of surface wave direction by the lateral line system of Xenopus: Source localization before and after inactivation of different parts of the lateral line. J Comp Physiol A 178:253–268

    PubMed  CAS  Google Scholar 

  • Collazo A, Fraser SE, Mabee PM (1994) A dual embryonic origin for vertebrate mechanoreceptors. Science 264:426–430

    PubMed  CAS  Google Scholar 

  • Connor CE, Johnson KO (1992) Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. J Neurosci 12:3414–3426

    PubMed  CAS  Google Scholar 

  • Coombs S, Fay RR (1993) Source level discrimination by the lateral line system of the mottled sculpin, Cottus bairdi. J Acoust Soc Amer 93:2116–2123

    CAS  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiolog-ical assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–568

    PubMed  CAS  Google Scholar 

  • Daws AG, Hennig RM (1996) Tuning of the peripheral auditory system of the cicada Cyclochla australasiae. Zoology 99:175–188

    Google Scholar 

  • Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A 175:791–800

    PubMed  CAS  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals for size differences of actively touched objects. J Exp Biol 198:2317–2323

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1993) Stimulation of the acoustico-lat-eralis system of Clupeid Fish by external sources and their own movements. Philos Trans R Soc Lond B 341:113–127

    Google Scholar 

  • Dickinson MH (1992) Directional sensitivity and mechanical coupling dynamics of campaniform sensiUa during chordwise deformations of the fly wing. J Exp Biol 169:221–233

    Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi. J Comp Physiol 176:31–44

    Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337–340

    PubMed  CAS  Google Scholar 

  • Dubuc B, CasteUucci VF (1991) Receptive fields and properties of a new cluster of mechanoreceptor neurons innervating the mantle region and the branchial cavity of the marine mollusk Aplysia californica. J Exp Biol 156:315–334

    PubMed  CAS  Google Scholar 

  • Ehn R, Tichy H (1994) Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei. J Comp Physiol A 174:345–350

    Google Scholar 

  • Elbert T, Pantev C, Wienbruch CH, Rockstroh B, Taub B (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–307

    PubMed  CAS  Google Scholar 

  • Fayyazuddin A, Dickinson MH (1996) Haltere afferents provide direct, electronic input to a steering motor neuron in the blowfly, Calliphora. J Neurosci 16:5225–5232

    PubMed  CAS  Google Scholar 

  • French AS (1992) Mechanotransduction. Ann Rev Physiol 54:135–152

    CAS  Google Scholar 

  • Friedel T, Barth FG (1995) The response of interneurons in the spider CNS (Cupiennius salei) to vibratory courtship signals. J Comp Physiol A 177:159–172

    Google Scholar 

  • Fundin BT, Arvidsson J, Rice FL (1995) Innervation of non-mystacial vibrissae in the adult rat. J Comp Neurol 357:501–512

    PubMed  CAS  Google Scholar 

  • Ganihar D, Libersat F, Wendler G, Camhi JM (1994) Wind-evoked evasive responses in flying cockroaches. J Comp Physiol A 175:49–66

    PubMed  CAS  Google Scholar 

  • Garcia-Anoveros J, Corey DP (1996) Touch at the molecular level. Curr Biol 6:541–543

    PubMed  CAS  Google Scholar 

  • Gillespie PG (1995) Molecular machinery of auditory and vestibular transduction. Curr Op Neurobiol 5:449–455

    PubMed  CAS  Google Scholar 

  • Glassman RB (1994) Behavioral specializations of SI and SII Cortex - A comparative examination of the neural logic of touch in rats, cats, and other mammals. Exp Neurol 125:134–141

    PubMed  CAS  Google Scholar 

  • Gnatzy W, Kämper G (1990) Digger wasp against crickets. II. An airborne signal produced by a running predator. J Comp Physiol A 167:551–556

    Google Scholar 

  • Gnatzy W, Schmidt K (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus. Z Zellforsch 122:190–209

    PubMed  CAS  Google Scholar 

  • Goodwin AW (1993) The code of roughness. Current Biol 3:378–379

    CAS  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1981) Merkel receptors: structure and transducer function. Science 214:183–186

    PubMed  CAS  Google Scholar 

  • Hamill OP, McBride DW (1995) Mechanoreceptive membrane channels. Amer Scientist 83:30–37

    Google Scholar 

  • Hamill OP, McBride DW (1996) A supramolecular complex underlying touch sensitivity. Trends Neurosci 19:258–261

    PubMed  CAS  Google Scholar 

  • Hartline PH (1971) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371

    PubMed  CAS  Google Scholar 

  • Horn E (1982) Vergleichende Sinnesphysiologie. Gustav Fischer, Stuttgart

    Google Scholar 

  • Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752

    PubMed  CAS  Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs. I Mathematical modelling of the hair and air motions. Philos Trans R Soc Lond B 340:423–444

    Google Scholar 

  • Ito M (1992) Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer-5b vibrissa neurones in the rat. J Physiol 454:247–265

    PubMed  CAS  Google Scholar 

  • Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556

    PubMed  CAS  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    PubMed  CAS  Google Scholar 

  • Juusola M, French AS (1995) Transduction and adaptation in spider slit sense organ mechanoreceptors. J Neuro-physiol 74:2513–2523

    CAS  Google Scholar 

  • Kalogianni E (1995) Physiological properties of wind-sensitive and tactile trichoid sensilla on the ovipositor and their role during oviposition in the locust. J Exp Biol 198:1359–1369

    PubMed  Google Scholar 

  • Kämper G, Kleindienst HU (1990) Oscillation of cricket sensory hairs in a low-frequency sound field. J Comp Physiol A 167:193–200

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (1991) Principle of Neu-roscience.Elsevier, New York

    Google Scholar 

  • Klinke R, Silbernagl S (1996) Lehrbuch der Physiologie. Thieme, Stuttgart

    Google Scholar 

  • Kuenzi F, Burrows M (1995) Central connections of sensory neurones from a hair plate proprioceptor in the thoracocoxal joint of the locust. J Exp Biol 198:1589–1601

    PubMed  CAS  Google Scholar 

  • Kyriazi HT, Simons DJ (1993) Thalamocortical response transformations in simulated whisker barrels. J Neurosci 13:1601–1615

    PubMed  CAS  Google Scholar 

  • Lenzi D, Roberts WM (1994) Calcium signalling in hair cells: multiple roles in a compact cell. Curr Opin Neuro-biol 4:496–502

    CAS  Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the criquet cercal sensory system enhanced by stochastic resonance. Nature 380:165–168

    PubMed  CAS  Google Scholar 

  • Lighthill J (1993) Estimates of pressure differences across the head of a swimming Clupeid fish. Philos Trans R Soc Lond B 341:129–140

    Google Scholar 

  • Lohmann KJ, Swartz AW, Lohmann CMF (1995) Perception of ocean wave direction by sea turtles. J Exp Biol 198:1079–1085

    PubMed  Google Scholar 

  • Michelsen A (1993) The transfer of information in the language of honeybee: progress and problems. J Comp Physiol A 173:135–142

    Google Scholar 

  • Montgomery J, Coombs S (1992) Physiological characterization of lateral line function in the antarctic fish Trematomus bernacchii. Brain Behav Evol 40:209–216

    PubMed  CAS  Google Scholar 

  • Muijser H (1994) An indication for spatial integration in a non-Pacinian mechanoreceptor system? J Acoust Soc Amer 96:781–785

    CAS  Google Scholar 

  • Murphy RK (1983) Maps in the insect nervous system. In:Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Heidelberg

    Google Scholar 

  • Murray JA, Willows AOD (1996) Function of identified nerves in orientation to water flow in Tritonia diomedea. J Comp Physiol A 178:201–209

    PubMed  CAS  Google Scholar 

  • Nagayama T, Newland PL (1993) A sensory map based on velocity threshold of sensory neurones from a chordo-tonal organ in the tailfan of the crayfish. J Comp Physiol A 172:7–16

    PubMed  CAS  Google Scholar 

  • Nalbach G (1993) The halteres of the blowfly Calliphora. I. Kinematics and dynamics. J Comp Physiol A 173:293–300

    Google Scholar 

  • Nalbach G, Hengstenberg R (1994) The halteres of the blowfly Calliphora. II. Three-dimensional organization of compensatory reactions to real and simulated rotations. J Comp Physiol A 175:695–708

    Google Scholar 

  • Narins PM (1990) Seismic communication in anuran amphibians. Bioscience 40:268–274

    Google Scholar 

  • Narins PM, Reichman OJ, Jarvis JUM, Lewis ER (1992) Seismic signal transition between burrows of the Cape mole-rat, Gerychus capensis. J Comp Physiol A 170:13–21

    PubMed  CAS  Google Scholar 

  • Netten SM van (1991) Hydrodynamics of the excitation of the cupula in the fish canal lateral line. J Acoust Soc Am 89:310–319

    Google Scholar 

  • Netten SM van, Maarseveen JTPW van (1994) Mechano-physiological properties of the supraorbital lateral line canal in ruffe (Acerina cernua). Proc R Soc Lond B 256:239–246

    Google Scholar 

  • Nowel MS, Shelton PMJ, Stephen RO (1995) Functional organisation of the metathoracic femoral chordotonal organ in the cricket Acheta domesticus. J Exp Biol 198:1977–1988

    PubMed  Google Scholar 

  • Penzlin H (1996) Lehrbuch der Tierphysiologie. Gustav Fischer, Jena

    Google Scholar 

  • Pons TP, Garraghty PE, Mishkin M (1992) Serial and parallel processing of tactual information in somatosensory cortex of Rhesus Monkeys. J Neurophysiol 68:518–527

    PubMed  CAS  Google Scholar 

  • Roces F, Tautz J, Hölldobler B (1993) Stridulation in leaf-cutting ants. Naturw 80:521–524

    Google Scholar 

  • Rudomin P (1990) Presynaptic inhibitation of muscle spindle and tendon organ afferents in the mammalian spinal cord. Trends in Neurosci 13:499–505

    CAS  Google Scholar 

  • Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57:333–353

    PubMed  CAS  Google Scholar 

  • Sathian K (1989) Tactile sensing of surface features. Trends in Neurosci 12:513–519

    CAS  Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1994) Vibratory communication in a wandering spider, Cupiennius getazi: female and male preferences for features of the conspecific male’s releaser. Anim Behav 48:1155–1171

    Google Scholar 

  • Schüch W, Barth FG (1990) Vibratory communication in a spider: female responses to synthetic male vibrations. J Comp Physiol A 166:817–826

    Google Scholar 

  • Sewell WF (1990) Synaptic potentials in afferent fibres innervating hair cells of the lateral line organ in Xenopus laevis. Hear Res 44:71–82

    PubMed  CAS  Google Scholar 

  • Seyfarth EA, Gnatzy W, Hammer K (1990) Coxal hair plates in spiders: physiology, fine structure, and specific central projections. J Comp Physiol A 166:633–642

    Google Scholar 

  • Shaw SR (1994) Detection of airborne sound by a cockroach Vibration detector’: A possible missing link in insect auditory evolution. J Exp Biol 193:13–47

    PubMed  Google Scholar 

  • Tauber E, Camhi JM (1995) The wind-evoked escape behavior of the cricket Gryllus bimaculatus: integration of behavioral elements. J Exp Biol 198:1895–1907

    PubMed  Google Scholar 

  • Teyke T (1990) Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol 35:23–30

    PubMed  CAS  Google Scholar 

  • Thurm U, Stedtler A, Foelix R (1974) Reizwirksame Verformungen der Terminalstrukturen eines Mechanorezeptors. Verh Dtsch Zool Ges 67:37–41

    Google Scholar 

  • Tichy H, Loftus R (1996) Hygroreceptors in insects and a spider: humidity transduetion modeis. Naturwiss 83: 255–263

    CAS  Google Scholar 

  • Wang X, Merzenich MM, Sameshima K, Jenkins WM (1995) Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378: 71–75

    PubMed  CAS  Google Scholar 

  • Wheat HE, Goodwin AW, Browning AS (1995) Tactile resolution: Peripheral neural mechanisms underlying the human capacity to determine positions of objects contacting the fingerpad. J Neurosci 15:5582–5595

    PubMed  CAS  Google Scholar 

  • Williamson R (1990) The responses of primary and secondary sensory hair cells in the squid statocyst to mechanical stimulation. J Comp Physiol 167:655–664

    Google Scholar 

  • Williamson R (1991) The responses of the sensory hair cells in the statocyst of Sepia. Structure, function, biological significance of the Cuttlefish “Lateral Lines”. In: Boucaud-Camou E (ed) The Cuttlefish.

    Google Scholar 

  • Wirth E, Barth FG (1992) Forces in the spider orb web. J Comp Physiol A 171:359–372

    Google Scholar 

  • Woolsey TA, van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242

    PubMed  CAS  Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus my-kiss). J Exp Biol 179:77–92

    Google Scholar 

  • Zhang K (1996) Representation of spatial orientation by intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci 16:2112–2126

    PubMed  CAS  Google Scholar 

  • Zill S, Seyfarth EA (1996) Exoskeletal sensors for walking. Sci Amer 275:70–74

    Google Scholar 

Gleichgewichtssinn

  • Aidley DJ (1978) The physiology of excitable cells. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Baker J (1999) Supraspinal descending control. In: Zig-mond MJ (ed) Fundamental neuroscience, chapter 32. Academic Press, New York

    Google Scholar 

  • Baker J, Goldberg J, Peterson B (1985) Spatial and temporal response properties of the vestibulocollic reflex in dece-rebrate cats. J Neurophysiol 54:735–756

    PubMed  CAS  Google Scholar 

  • Benser ME, Issa NP, Hudspeth AJ (1993) Hair-bundle stiffness dominates the elastic reactance to otolithic-mem-brane shear. Hear Res 68:243–252

    PubMed  CAS  Google Scholar 

  • Boyle R, Highstein SM (1990) Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurosci 10:1557–1569

    PubMed  CAS  Google Scholar 

  • Brichta AM, Peterson EH (1994) Functional architecture of vestibular primary afferents from the posterior semicircular canal of a turtle, Pseudemys scripta elegans. J Comp Neurol 344:481–507

    PubMed  CAS  Google Scholar 

  • Budelmann BU (1980) Equilibrium and orientation in cephalopods. Oceanus 23:34–43

    Google Scholar 

  • * Budelmann BU (1987) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Heidelberg, pp 757–782

    Google Scholar 

  • Budelmann BU (1992) Hearing of nonarthropod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Heidelberg, pp 141–155

    Google Scholar 

  • Budelmann BU (1994) Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Mar Fresh Behav Physiol 25:13–33

    Google Scholar 

  • Chrachri A, Williamson R (1998) Synaptic interactions between crista hair cells in the statocyst of the squid Allotheutis subulata. J Neurophysiol 80:656–666

    PubMed  CAS  Google Scholar 

  • Cortopassi KA, Lewis ER (1998) A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav Evol 51:331–348

    PubMed  CAS  Google Scholar 

  • Deliagina TG, Arshavsky YI, Orlovsky GN (1998) Control of spatial orientation in a mollusc. Nature 393:172–175

    PubMed  CAS  Google Scholar 

  • Highstein SM, Rabbitt RD, Boyler R (1996) Determinants of semicircular canal afferent response dynamics in the toadfish, Opsanus tau. J Neurophysiol 75:575–596

    PubMed  CAS  Google Scholar 

  • Kurc M, Farina M, Lins U, Kachar B (1999) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: III. The organization of the otoconial mass. Hear Res 131:11–21

    PubMed  CAS  Google Scholar 

  • Lewis ER, Li CW (1975) Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50

    Google Scholar 

  • Lowe B (1997) The role of Ca++ in deflection-induced excitation of motile, mechanoresponsive balancer cilia in the ctenophore statocyst. J Exp Biol 200:1593–1606

    PubMed  CAS  Google Scholar 

  • Löwenstein OE (1974) Comparative morphology and physiology. In: Kornhuber HH (ed) Hdb Sens Physiol VI, 1. Springer, Heidelberg, pp 75–120

    Google Scholar 

  • Lu Z, Popper AN (1998) Morphological polarizations of sensory hair cells in the otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles. Hear Res 126: 47–57

    PubMed  CAS  Google Scholar 

  • Lu Z, Song J, Popper AN (1998) Encoding of acoustical directional information by saccular afferents of the sleeper goby, Dormitator latifrons. J Comp Physiol A 182: 805–815

    PubMed  CAS  Google Scholar 

  • Markl H (1974) The perception of gravity and angular acceleration in invertebrates. In: Kornhuber HH (ed) Hdb Sens Physiol VI/1. Springer, Heidelberg, pp 17–44

    Google Scholar 

  • Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Hdb Sens Physiol VI/2. Springer, Heidelberg, pp 493–580

    Google Scholar 

  • Narins P (1990) Seismic communication in anuran amphibians. Biosci 40:268–274

    Google Scholar 

  • Narins P (1993) Comparative aspects of interactive communication.In: Flock A, Ottoson D, Ulfendahl M (eds) Active Hearing. Pergamon, New York, pp 363–372

    Google Scholar 

  • Narins P, Lewis ED, Jarvis JUM, O’Riain J (1997) The use of seismic signals by fossorial Southern African mammals: a neuroethological gold mine. Brain Res Bull 44:641–646

    PubMed  CAS  Google Scholar 

  • Narins P, Reichmann OJ, Jarvis JUM, Lewis ER (1992) Seismic signal transmission between burrows of the Cape mole-rat, Georychus capensis. J Comp Physiol A 170:13–21

    PubMed  CAS  Google Scholar 

  • Neumeister H, Budelmann BU (1997) Structure and function of the Nautilus statocyst. Phil Trans R Soc Lond B 352:1565–1588

    CAS  Google Scholar 

  • Parker DE (1980) The vestibular apparatus. Sci Amer 243:98–111

    Google Scholar 

  • Rose PK, Ely S, Norkum V, Neuber-Hess M (1999) Projections from the lateral vestibular nucleus to the upper cervical spinal cord of the cat. J Comp Neurol 410:571–585

    PubMed  CAS  Google Scholar 

  • Schöne H (1980) Wie unterscheidet der Mensch oben und unten? Naturw Rundschau 33:425–428

    Google Scholar 

  • Uchino Y, Sato H, Sasaki M, Imagawa M, Ikegami H, Graf W (1997) Sacculocollic reflex arcs in cats. J Neurophysiol 77:3003–3012

    PubMed  CAS  Google Scholar 

  • Zigmond MJ (1999) Fundamental Neuroscience. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neuweiler, G., Heldmaier, G. (2003). Mechanische Sinne. In: Vergleichende Tierphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55699-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55699-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62924-2

  • Online ISBN: 978-3-642-55699-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics