Skip to main content

Part of the book series: Fortschritte der praktischen Dermatologie und Venerologie ((DERMATOLOGIE,volume 18))

  • 134 Accesses

Zusammenfassung

Überwinden pathogene Mikroorganismen eine körpereigene Barriere, wird ein pathophysiologischer Prozess in Gang gesetzt, der zur ihrer Beseitigung führt: die Entzündung. Im folgenden Kapitel sollen die Möglichkeiten von Wirtszellen aufgezeigt werden, Mikroorganismen zu erkennen. Darüber hinaus werden die intrazellulären Mechanismen vorgestellt, die als Folge dieser Erkennung aktiviert werden. Die Funktionen von Chemokinen und Chemokinrezeptoren sowie von Adhäsionsmolekülen bei der Entzündung werden in gesonderten Kapiteln in diesem Band behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413: 732–738

    Article  CAS  PubMed  Google Scholar 

  2. Baeuerle PA, Henkel T (1994) Function and activation of NF-κB in the immune system. Annu Rev Immunol 12: 141–179

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  4. Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12: 393–416

    Article  CAS  PubMed  Google Scholar 

  5. Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271:1128–1131

    Article  CAS  PubMed  Google Scholar 

  6. Cavigelli M, Dolfì F, Claret FX, Karin M (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J 14: 5957–5964

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Chu WM, Ostertag D, Li ZW, Chang L, Chen Y, Hu Y, Williams B, Perrault J, Karin M (1999) JNK2 and IKKß are required for activating the innate response to viral infection. Immunity 11:721–731

    Article  CAS  PubMed  Google Scholar 

  8. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252

    Article  CAS  PubMed  Google Scholar 

  9. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167: 1882–1885

    Article  CAS  PubMed  Google Scholar 

  10. Gewirtz AT, Simon PO jr, Schmitt CK, Taylor LJ, Hagedorn CH, O’Brien AD, Neish AS, Madara JL (2001) Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest 107:99–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109 [suppl]: S81–96

    Article  CAS  PubMed  Google Scholar 

  12. Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998) CpG-DNA-specifìc activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  CAS  PubMed  Google Scholar 

  15. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200

    Article  CAS  PubMed  Google Scholar 

  16. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740 - 745

    Article  CAS  PubMed  Google Scholar 

  17. Imler JL, Hoffmann JA (2000) Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol 3:16–22

    Article  CAS  PubMed  Google Scholar 

  18. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499

    Article  CAS  PubMed  Google Scholar 

  19. Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 5688–5694

    Article  CAS  PubMed  Google Scholar 

  20. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621–663

    Article  CAS  PubMed  Google Scholar 

  21. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9: 240–246

    Article  CAS  PubMed  Google Scholar 

  22. Kastenbauer S, Ziegler-Heitbrock HW (1999) NF-κB 1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect Immun 67: 1553–1559

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115–122

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi K, Hernandez LD, Galan JE, Janeway CA jr, Medzhitov R, Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191 - 202

    Article  CAS  PubMed  Google Scholar 

  25. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549

    Article  CAS  PubMed  Google Scholar 

  26. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 99: 5567–5572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–1024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadien A, Chen C, Ghosh S, Janeway CA jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2: 253–258

    Article  CAS  PubMed  Google Scholar 

  30. Messer G, Rupec RA (2001) Nuclear factor κB (NF-κB). I. Funktion und Regulation. Hautarzt 52: 677–685

    Article  CAS  PubMed  Google Scholar 

  31. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3: 667–672

    CAS  PubMed  Google Scholar 

  32. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-IKB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256

    Article  CAS  PubMed  Google Scholar 

  33. Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S (2000) Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 164: 3476–3479

    Article  CAS  PubMed  Google Scholar 

  34. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97:13766–13771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18: 6853–6866

    Article  CAS  PubMed  Google Scholar 

  36. Poltorak A, He X, Smirnova I, Liu MY, Huffei CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088

    Article  CAS  PubMed  Google Scholar 

  37. Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X (2001) IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NF-κB. J Biol Chem 276: 41661–41667

    Article  CAS  PubMed  Google Scholar 

  38. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16: 1247–1255

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Reis e Sousa C, Sher A, Kaye P (1999) The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr Opin Immunol 11: 392–399

    Google Scholar 

  40. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2: 947–950

    Article  CAS  PubMed  Google Scholar 

  41. Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 10: 1139–1142

    Article  CAS  PubMed  Google Scholar 

  42. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J ExpMed 189: 1777–1782

    Article  CAS  Google Scholar 

  43. Silverman N, Maniatis T (2001) NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev 15: 2321–2342

    Article  CAS  PubMed  Google Scholar 

  44. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC (2002) Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416: 750–756

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  CAS  PubMed  Google Scholar 

  47. Treisman R (1995) Journey to the surface of the cell: Fos regulation and the SRE. EMBO J 14: 4905–4913

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Underhill DM, Ozinsky A (2002) Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 14: 103–110

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346–351

    Article  CAS  PubMed  Google Scholar 

  50. Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z (1999) IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 274:19403–19410

    Article  CAS  PubMed  Google Scholar 

  51. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837–847

    Article  CAS  PubMed  Google Scholar 

  52. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21

    Article  CAS  PubMed  Google Scholar 

  53. Weston CR, Lambright DG, Davis RJ (2002) Signal transduction. MAP kinase signaling specificity. Science 296: 2345–2347

    Article  CAS  PubMed  Google Scholar 

  54. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ Mathison JC, (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433

    Article  CAS  PubMed  Google Scholar 

  55. Zhang G, Ghosh S (2002) Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 277: 7059–7065

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rupec, R.A. (2003). Infektion und Entzündung. In: Plewig, G., Prinz, J. (eds) Fortschritte der praktischen Dermatologie und Venerologie. Fortschritte der praktischen Dermatologie und Venerologie, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55661-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55661-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43948-6

  • Online ISBN: 978-3-642-55661-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics