Skip to main content

Abstract

The spectrum of a closed Riemannian manifold is the eigenvalue spectrum of the associated Laplace operator acting on functions, counted with multiplicities; two manifolds are said to be isospectral if their spectra coincide. Spectral geometry deals with the mutual influences between the spectrum of a Riemannian manifold and its geometry. To which extent does the spectrum determine the geometry?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballmann, W. (2001): On the construction of isospectral manifolds. (Preprint)

    Google Scholar 

  2. Bérard, P. (1992): Transplantation et isospectralité I. Math. Ann., 292. 547–559

    Article  MathSciNet  MATH  Google Scholar 

  3. Bérard, P. (1993): Transplantation et isospectralité II. J. London Math. Soc, 48, 565–576

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M., Gauduchon, P., Mazet, E. (1971): Le Spectre d’une Variété Riemannienne. Springer Lect. Notes Math., 194

    Google Scholar 

  5. DeTurck, D., Gordon, C.S. (1987): Isospectral Deformations II: Trace formulas, metrics, and potentials. Comm. Pure Appl. Math., XL, 1067–1095

    Google Scholar 

  6. Gordon, C.S. (1993): Isospectral closed Riemannian manifolds which are not locally isometric. J. Diff. Geom., 37, 639–649

    MATH  Google Scholar 

  7. Gordon, C.S. (1994): Isospectral closed Riemannian manifolds which are not locally isometric: II. In: Brooks, R., Gordon, C., Perry, P. (eds) Geometry of the Spectrum. Contemp. Math., 173. 121–131

    Google Scholar 

  8. Gordon, C.S. (2001): Isospectral deformations of metrics on spheres. Invent. Math., 145,317–331

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, C.S., Gornet, R., Schueth, D., Webb, D., Wilson, E. (1998): Isospectral deformations of closed Riemannian manifolds with different scalar curvature. Ann. Inst. Fourier, 48. 593–607

    Article  MathSciNet  MATH  Google Scholar 

  10. Gordon, C.S., Szabó, Z.I. (2001): Isospectral deformations of negatively curved Riemannian manifolds with boundary which are not locally isometric. Duke Math. J. (to appear)

    Google Scholar 

  11. Gordon, C.S., Wilson, E. (1997): Continuous families of isospectral Riemannian metrics which are not locally isometric. J. Diff. Geom., 47. 504–529

    MathSciNet  MATH  Google Scholar 

  12. Pesce, H. (1996): Représentations relativement équivalentes et variétés riemanniennes isospectrales. Comment. Math. Helvetici, 71. 243–268

    Article  MathSciNet  MATH  Google Scholar 

  13. Schiemann, A. (1997): Ternary positive definite quadratic forms are determined by their theta series. Math. Ann., 308. 507–517

    Article  MathSciNet  MATH  Google Scholar 

  14. Schueth, D. (1999): Continuous families of isospectral metrics on simply connected manifolds. Ann. of Math., 149. 287–308

    Article  MathSciNet  MATH  Google Scholar 

  15. Schueth, D. (2001): Isospectral manifolds with different local geometries. J. reine angew. Math., 534. 41–94

    Article  MathSciNet  MATH  Google Scholar 

  16. Schueth, D. (2001): Isospectral metrics on five-dimensional spheres. J. Diff. Geom. (to appear)

    Google Scholar 

  17. Sunada, T. (1985): Riemannian coverings and isospectral manifolds. Ann. of Math., 121. 169–186

    Article  MathSciNet  MATH  Google Scholar 

  18. Szabó, Z.I. (1997): Locally non-isometric yet super isospectral spaces. Geom. Funct. Anal., 9, 185–214

    Article  Google Scholar 

  19. Szabó, Z.I. (2001): Isospectral pairs of metrics on balls, spheres, and other manifolds with different local geometries. Ann. of Math., 154. 437–475

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanno, S. (1973): Eigenvalues of the Laplacian of Riemannian manifolds. Tôhoku Math. J., 25. 391–403

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schueth, D. (2003). Constructing Isospectral Metrics via Principal Connections. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55627-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55627-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44051-2

  • Online ISBN: 978-3-642-55627-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics