Skip to main content

Markov Semigroups and Harmonic Maps

  • Chapter
  • 1416 Accesses

Summary

We present a semigroup approach to harmonic maps between metric spaces. Our basic assumption on the target space (N, d) is that it admits a ”barycenter contraction”, i.e. a contracting map which assigns to each probability measure q on N a point b(q) in N. This includes all metric spaces with globally nonpositive curvature in the sense of Alexandrov as well as all Banach spaces.

The analytic input comes from the domain space (M, p) where we assume that we are given a Markov semigroup (pt)t>0. Typical examples come from elliptic or parabolic second order operators on ℝn, from Lévy type operators, from Laplacians on manifolds or on metric measure spaces, and from convolution operators on groups. In contrast to the work of [25], [26], [21], [22], [8], our semigroups are not required to be symmetric.

The linear semigroup acting e.g. on the space of bounded measurable functions u : M → ℝ gives rise to a nonlinear semigroup acting on certain classes of measurable maps f :MN. We will show that contraction and smoothing properties of the linear semigroup (pt)t can be extended to the nonlinear semigroup. Among others, we state existence, uniqueness and Lipschitz continuity of the solution to the Dirichlet problem for harmonic maps between metric spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ballmann (1995): Lectures on spaces of nonpositive curvature. DMV Seminar Band 25, Birkhäuser

    Google Scholar 

  2. H. Bauer (1996): Probability theory, de Gruyter Studies in Mathematics, 23. Walter de Gruyter & Co., Berlin

    Google Scholar 

  3. A. Bendikov (1995): Potential theory on infinite-dimensional Abelian groups, de Gruyter Studies in Mathematics, 21. Walter de Gruyter, Berlin

    Book  Google Scholar 

  4. A. Bendikov, L. Saloff-Coste (2001): On the absolute continuity of Gaussian measures on locally compact groups. J. Theor. Probab. 14. No. 3, 887–898

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Eells, L. Lemaire (1978): A report on harmonic maps. Bull. London Math. Soc. 10, 1–68

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Eells, L. Lemaire (1988): Another report on harmonic maps. Bull. London Math. Soc. 20, 385–524

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Eells, J.H. Sampson (1964): Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Eells, B. Fuglede (2001): Harmonic maps between Riemannian polyhedra. Cambridge Tracts in Mathematics, 142. Cambridge University Press, Cambridge

    Google Scholar 

  9. A. Es-Sahib, H. Heinich (1999): Barycentre canonique pour un espace métrique là courbure négative. Séminaire de Probabilités, XXXIII, 355–370, Lecture Notes in Math., 1709. Springer, Berlin

    Google Scholar 

  10. S. N. Ethier, T. G. Kurtz (1986): Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley, New York

    Google Scholar 

  11. C. Fefferman, D. H. Phong (1983): Subelliptic eigenvalue problems. Conference on harmonic analysis, 590–606, Chicago, Wadsworth Math. Ser.

    Google Scholar 

  12. G. Gregori (1998): Sobolev spaces and harmonic maps between singular spaces. Calc. Var. Partial Differ. Equ. 7, 1–18

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Grigoryan (1999): Estimates of heat kernels on Riemannian manifolds. Spectral theory and geometry, 140–225, London Math. Soc. Lecture Note Ser., 273. Cambridge Univ. Press

    MathSciNet  Google Scholar 

  14. M. Gromov, R. Schoen (1992): Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. Math., Inst. Hautes Étud. Sci., 76, 165–246

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Hildebrandt, H. Kaul, K.-O. Widman (1975): Harmonic mappings into Riemannian manifolds with non-positive sectional curvature. Math. Scandinav. 37. 257–263

    MathSciNet  Google Scholar 

  16. S. Hildebrandt, H. Kaul, K.-O. Widman (1977): An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138. 1–16

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Ishihara (1979): A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19. 215–229

    MathSciNet  MATH  Google Scholar 

  18. N. Jacob (1996): Pseudo-differential operators and Markov processes. Mathematical Research, 94. Akademie Verlag, Berlin

    Google Scholar 

  19. N. Jacob (2001): Pseudo differential operators and Markov processes. Vol. I. Fourier analysis and semigroups. Imperial College Press, London

    Google Scholar 

  20. D. S. Jerison, A. Sanchez-Calle (1986): Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35, no. 4, 835–854

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Jost (1994): Equilibrium maps between metric spaces. Calc. Var. Partial Differential Equations 2, 2, 173–204

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Jost (1997): Generalized Dirichlet forms and harmonic maps. Calc. Var. Partial Differential Equations 5, no. 1, 1–19

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Jost (1997a): Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel

    Book  MATH  Google Scholar 

  24. W. S. Kendall (1990): Probability, convexity, and harmonic maps with small images. I. Uniqueness and fine existence. Proc. London Math. Soc. 61, 371–406

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Korevaar, R. Schoen (1994): Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1, 561–569

    MathSciNet  Google Scholar 

  26. N. Korevaar, R. Schoen (1997): Global existence theorems for harmonic maps to nonlocally compact spaces. Comm. Anal. Geom. 5, 333–387

    MathSciNet  MATH  Google Scholar 

  27. M. Ledoux (2000): The geometry of Markov diffusion generators. Probability theory. Ann. Fac. Sci. Toulouse Math. 9, 305–366

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Ledoux, Talagrand (1991): Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete 23. Springer, Berlin

    Google Scholar 

  29. Z. M. Ma, M. Röckner (1992): Introduction to the theory of (nonsymmetric) Dirichlet forms. Universitext. Springer, Berlin

    Book  Google Scholar 

  30. S. T. Rachev, L. Rüschendorf (1998): Mass transportation problems. Vol. I. Theory. Probability and its Applications. Springer, New York

    Google Scholar 

  31. M.-K. von Renesse (2002): Comparison properties of diffusion semigroups on spaces with lower curvature bounds. PhD Thesis, Bonn

    Google Scholar 

  32. D. W. Stroock, S. R. S. Varadhan (1979): Multidimensional diffusion processes. Grundlehren der Mathematischen Wissenschaften 233. Springer-Verlag, Berlin-New York

    Google Scholar 

  33. M. Struwe (1985): On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558–581

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Struwe (1988): On the evolution of harmonic maps in higher dimensions. J. Differential Geom. 28, 485–502

    MathSciNet  MATH  Google Scholar 

  35. K.T. Sturm (2001): Nonlinear Markov operators associated with symmetric Markov kernels and energy minimizing maps between singular spaces. Calc. Var. 12, 317–357

    Article  MathSciNet  MATH  Google Scholar 

  36. K.T. Sturm (2002): Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. To appear in Ann. Prob.

    Google Scholar 

  37. K.T. Sturm (2002a): Nonlinear Markov operators, discrete heat flow, and harmonic maps between singular spaces. Potential Analysis 16, 305–340

    Article  MathSciNet  MATH  Google Scholar 

  38. K.T. Sturm (2002b): A semigroup approach to harmonic maps. Preprint, Bonn

    Google Scholar 

  39. K. Taira (1991): Boundary value problems and Markov processes. Lecture Notes in Mathematics, 1499. Springer-Verlag, Berlin

    Google Scholar 

  40. A. Thalmaier (1996): Martingales on Riemannian manifolds and the nonlinear heat equation. Stochastic analysis and applications, 429–440, World Sci. Publishing, River Edge, NJ

    Google Scholar 

  41. A. Thalmaier (1996a): Brownian motion and the formation of singularities in the heat flow for harmonic maps. Probab. Theory Related Fields 105, no. 3, 335–367

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sturm, KT. (2003). Markov Semigroups and Harmonic Maps. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55627-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55627-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44051-2

  • Online ISBN: 978-3-642-55627-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics