Skip to main content

Abstract

In this note we give an overview of results concerning the Korteweg-de Vries equation

$$ {\text{u}}_t {\text{ = - u}}_{xxx} {\text{ + 6uu}}_x $$

and small perturbations of it. All the technical details will be contained in our forthcoming book [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. BÄttig, A. M. Bloch, J.-C. Guillot & T. Kappeler, On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J. 79 (1995), 549–604.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. BÄttig, T. Kappeler & B. Mityagin, On the Korteweg-de Vries equation: Convergent Birkhoff normal form. J. Fund. Anal. 140 (1996), 335–358.

    Article  MATH  Google Scholar 

  3. R. F. BIKBAEV & S. B. Kuksin, On the parametrization of finite gap solutions by frequency vector and wave number vector and a theorem of I. Krichever. Lett. Math. Phys. 28(1993), 115–122.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. BOBENKO & S. B. Kuksin, Finite-gap periodic solutions of the KdV equation are non-degenerate. Physics Letters A 161 (1991), 274–276.

    Article  MathSciNet  Google Scholar 

  5. A. I. BOBENKO & S. B. Kuksin, The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation. Comm. Math. Helv. 70 (1995), 63–112.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3 (1993), 209–262.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, On the Cauchy problem for periodic KdV-type equations. Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. (1995), Special Issue, 17–86.

    Google Scholar 

  8. J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6 (1996), 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations. Colloquium Publications, American Mathematical Society, 1999.

    Google Scholar 

  10. J. Boussinesq, Théorie de l’intumescence liquid appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rend. Acad. Sci. (Paris) 72 (1871), 755–759.

    Google Scholar 

  11. W. CRAIG & C. E. Wayne, Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46 (1993), 1409–1498.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. A. Dubrovin, Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials. Funct. Anal. Appl. 9 (1975), 215–223.

    Article  Google Scholar 

  13. B. A. DUBROVIN, I. M. KRICHEVER & S. P. Novikov, The Schrödinger equation in a periodic field and Riemann surfaces. Sov. Math. Dokl. 17 (1976), 947–951.

    MATH  Google Scholar 

  14. B. A. Dubrovin, I. M. Krichever & S. P. Novikov, Integrable Systems I. In: Dynamical Systems IV. Encyclopedia of Mathematical Sciences vol. 4, V. I. ARNOLD & S.P. NOVIKOV (eds.). Springer, 1990, 173–280.

    Google Scholar 

  15. B. A. DUBROVIN, V. B. MATVEEV & S. P. Novikov, Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators and Abelian varieties. Russ. Math. Surv. 31 (1976), 59–146.

    Article  MATH  Google Scholar 

  16. B. A. DUBROVIN & S. P. Novikov, Periodic and conditionally periodic analogues of the many-soliton solutions of the Kortweg-de Vries equation. Sov. Phys.-JETP 40 (1974), 1058–1063.

    MathSciNet  Google Scholar 

  17. L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa 15 (1988), 115–147.

    MathSciNet  MATH  Google Scholar 

  18. L. D. FADDEEV & V.E. Zakharov, Kortweg-de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl. 5 (1971), 280–287.

    Google Scholar 

  19. H. FLASCHKA & D. Mclaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and Toda lattices with periodic boundary conditions. Progress Theor. Phys. 55 (1976), 438–456.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. P. Françoise, The Amol’d formula for algebraically completely integrable systems. Bull. Amer. Math. Soc. (N.S.) 17 (1987), 301–303.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. S. Gardner, Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys. 12 (1971), 1548–1551.

    Article  MATH  Google Scholar 

  22. J. GARNETT & E. T. Trubowitz,Gaps and bands of one dimensional periodic Schrödinger operators. Comment. Math. Helv. 59 (1984), 258–312.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. GrÉbert, T. Kappeler & J. Pöschel, Normal form theory for the NLS equation. In preparation.

    Google Scholar 

  24. PH. GRIFFITHS & J. Harris, Principles of Algebraic Geometry. John Wiley & Sons, New York, 1978.

    MATH  Google Scholar 

  25. A. R. ITS & V. B. Matveev, A class of solutions of the Korteweg-de Vries equation. Probl. Mat. Fiz. 8. Leningrad State University, Leningrad, 1976, 70–92.

    Google Scholar 

  26. T. KAPPELER & M. Makarov, On Birkhoff coordinates for KdV. Ann. Henri Poincaré 2 (2001), 807–856.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Kappeler & J. Pöschel, KdV & KAM. Springer, to appear.

    Google Scholar 

  28. C. Kenig, G. Ponce & L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996), 573–603.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. J. Korteweg & G. de. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. Ser. 5 39 (1895), 422–443.

    Google Scholar 

  30. I. Krichever, Integration of nonlinear equations by methods of algebraic geometry. Funkt. Anal. Appl. 11 (1977), 15–31.

    MATH  Google Scholar 

  31. I. Krichever, “Hessians” of integrals of the Korteweg-de Vries equation and perturbations of finite-gap solutions. Dokl. Akad. Nauk SSSR 270 (1983), 1312–1317 [Russian]. English translation in Sov. Math. Dokl.27(1983), 757-761.

    MathSciNet  Google Scholar 

  32. M. D. KRUSKAL & N. J. Zabusky, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965), 240–243.

    Article  MATH  Google Scholar 

  33. S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funts. Anal. Prilozh. 21 (1987), 22–37 [Russian]. English translation in Fund. Anal. Appl. 21 (1987), 192-205.

    MathSciNet  MATH  Google Scholar 

  34. S. B. Kuksin, Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its application to the Korteweg-de Vries equation. Matem. Sbornik 136 (1988) [Russian]. English translation in Math. USSR Sbornik 64 (1989), 397–413.

    MathSciNet  MATH  Google Scholar 

  35. S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes in Mathematics 1556, Springer, 1993.

    Google Scholar 

  36. S. B. Kuksin, On small-denominator equations with large variable coefficients. Preprint, 1995.

    Google Scholar 

  37. S. B. Kuksin, A KAM-theorem for equations of the Korteweg-de Vries type. Rev. Math. Phys. 10 (1998), 1–64.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. B. Kuksin, Analysis of Hamiltonian PDEs. Oxford University Press, Oxford, 2000.

    Google Scholar 

  39. S. B. KUKSIN & J. PöSCHEL, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143 (1996), 149–179.

    Article  MATH  Google Scholar 

  40. P. Lax, Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 (1968), 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Lax, Periodic solutions of the KdV equation. Comm. Pure Appl Math. 28 (1975), 141–188.

    Article  MathSciNet  MATH  Google Scholar 

  42. W. MAGNUS & S. Winkler, Hill’s Equation. Second edition, Dover, New York, 1979.

    Google Scholar 

  43. V. A. MarČhenko, Sturm-Liouville Operators and Applications. Birkhäuser, Basel, 1986.

    MATH  Google Scholar 

  44. H. P. MCKEAN & P. VAN Moerbecke, The spectrum of Hill’s equation. Invent. Math. 30 (1975), 217–274.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. P. Mckean & E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math. 29 (1976), 143–226.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. P. MCKEAN & E. Trubowitz, Hill’s surfaces and their theta functions. Bull. Am. Math. Soc. 84 (1978), 1042–1085.

    MathSciNet  MATH  Google Scholar 

  47. H. P. MCKEAN & K. L. Vaninsky, Action-angle variables for the cubic Schroedinger equation.Comm. Pure Appl. Math. 50 (1997), 489–562.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. P. MCKEAN & K. L. Vaninsky, Cubic Schroedinger: The petit canonical ensemble in action-angle variables. Comm. Pure Appl. Math. 50 (1997), 594–622.

    MATH  Google Scholar 

  49. V. K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamilton function. Soviet Math. Doklady 6 (1965), 1592–1596.

    Google Scholar 

  50. R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9 (1968), 1202–1204.

    Article  MathSciNet  MATH  Google Scholar 

  51. R. M. MIURA, C. S. GARDNER & M. D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968), 1204–1209.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. PÖSCHEL, On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202 (1989), 559–608.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. PÖSCHEL, Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Comm. Math. Phys. 127 (1990), 351–393.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. PÖSCHEL, A KAM-theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Sup. Pisa 23 (1996), 119–148.

    MATH  Google Scholar 

  55. J. PÖSCHEL, Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71 (1996), 269–296.

    Article  MathSciNet  MATH  Google Scholar 

  56. J. PÖSCHEL, On the construction of almost periodic solutions for a nonlinear Schrödinger equation. Preprint, 1996.

    Google Scholar 

  57. LORD Rayleigh, On waves. Phil. Mag. Ser. 5 1 (1876), 257–279.

    Article  Google Scholar 

  58. J. S. Russell, Report on waves. In: Report of the Fourteenth Meeting of the British Association for the Advancement of Sciences. John Murray, London, 1844, 311–390.

    Google Scholar 

  59. J. SAUT & R. Temam, Remarks on the Korteweg-de Vries equation. Israel J. Math. 24 (1976), 78–87.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. SJöBERG, On the Korteweg-de Vries equation: existence and uniqueness. J. Math. Anal. Appl. 29 (1970),569–579.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. Temam, Sur un probllème non linéaire. J. Math. Pures Appl. 48 (1969), 159–172.

    MathSciNet  MATH  Google Scholar 

  62. P. van Moerbeke, The spectrum of Jacobi matrices. Invent. Math. 37 (1976), 45–81.

    Google Scholar 

  63. G. B. Witham, Linear and Nonlinear Waves. Wiley, New York, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappeler, T., Pöschel, J. (2003). On the Korteweg — de Vries Equation and KAM Theory. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55627-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55627-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44051-2

  • Online ISBN: 978-3-642-55627-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics