Skip to main content

Summary

We outline an approach to study the properties of nonlinear partial differential equations through the geometric properties of a set in the space ofm xn matrices which is naturally associated to the equation. In particular, different notions of convex hulls play a crucial role. This work draws heavily on Tartar’s work on oscillations in nonlinear pde and compensated compactness and on Gromov’s work on partial differential relations and convex integration. We point out some recent successes of this approach and outline a number of open problems, most of which seem to require a better geometric understanding of the different convexity notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Alfsen, Compact convex sets and boundary integrals. Springer, 1971.

    Google Scholar 

  2. K. Astala and D. Faraco, Quasiregular mappings and Gradient Young measures, to appear in Proc. Roy. Soc. Edinburgh.

    Google Scholar 

  3. R. Aumann and S. Hart, Bi-convexity and bi-martingales, Israel J. Math. 54 (1986), 159–180.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.M. Ball, Strict convexity, strong ellipticity and regularity in the calculus of variations, Math. Proc. Cambridge Phil. Soc. 87 (1980), 501–513.

    Article  MATH  Google Scholar 

  5. J.M. Ball, Sets of gradients with no rank-one connections, J. Math. Pures Appl. 69 (1990), 241–259.

    MathSciNet  MATH  Google Scholar 

  6. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal. 100 (1987), 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein theorem, Invent. Math. 7 (1969), 243–269.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Braides, I. Fonseca and G. Leoni, A-quasiconvexity: relaxation and homogenization, ESAIM Control Optim. Calc. Var. 5 (2000), 539–577.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Casadio-Tarabusi, An algebraic characterization of quasi-convex functions, Ricerche Mat. 42(1993), 11–24.

    MathSciNet  Google Scholar 

  10. A. Cellina, On the differential inclusion x ∈ [-1, 1], Atti Accad. Naz. Lincei Rend. Sci. Fis. Mat. Nat. 69, 1–6.

    Google Scholar 

  11. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rat. Mech. Anal. 103 (1988), 237–277.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Chlebik and B. Kirchheim, Rigidity for the four gradient problem, Preprint MPI-MIS 35/2000.

    Google Scholar 

  13. B. Dacorogna, Direct methods of the calculus of variations, Springer, 1989.

    Google Scholar 

  14. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Dacorogna and P. Marcellini, Implicit partial differential equations. Birkhäuser, 1999.

    Google Scholar 

  16. G. Dolzmann, Variational Methods for Crystalline Microstructure — Analysis and Computation, to appear as Lecture Notes in Mathematics, Springer.

    Google Scholar 

  17. F.S. DeBlasi and G. Pianigiani, Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac. 25 (1982), 153–162.

    MathSciNet  MATH  Google Scholar 

  18. F.S. De Blasi and G. Pianigiani, Non convex valued differential inclusions in Banach spaces, J. Math. Anal Appl. 157 (1991), 469–494.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. U.M.I. 4 (1968), 135–137.

    Google Scholar 

  20. A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3) invariant energies, Arch. Rat. Mech. Anal. 161 (2002), 181–204.

    Article  Google Scholar 

  21. R.J. DiPerna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc. 292 (1985), 383–420.

    Article  MathSciNet  Google Scholar 

  22. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal. 95 (1986), 227–252.

    Article  MATH  Google Scholar 

  23. I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal. 30 (1999), 1355–1390.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Friesecke, personal communication.

    Google Scholar 

  25. M. Fuchs, Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis 7 (1987), 83–93.

    MathSciNet  MATH  Google Scholar 

  26. E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni, Boll U.M.I 2 (1968), 1–8.

    Google Scholar 

  27. M. Gromov, Convex integration of differential relations,Izw. Akad. Nauk S.S.S.R 37 (1973), 329–343.

    MathSciNet  MATH  Google Scholar 

  28. M. Gromov, Partial differential relations. Springer, 1986.

    Google Scholar 

  29. C. Hamburger, Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations, Ann. Mat. Pure Appl.Ser. IV 169 (1995), 321–354.

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Hao, S. Leonardi, J. Nečas, An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients, Ann. SNS Pisa Ser. IV 23 (1996), 57–67.

    MATH  Google Scholar 

  31. D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients, Arch. Rat. Mech. Anal. 115 (1991), 329–365.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Kirchheim, Deformations with finitely many gradients and stability of quasiconvex hulls, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 289–294.

    MathSciNet  MATH  Google Scholar 

  33. B. Kirchheim, Habilitation thesis, University Leipzig, 2001.

    Google Scholar 

  34. J. Kolář, Non-compact lamination convex hulls, Preprint MPI-MIS 17/2001.

    Google Scholar 

  35. J. Kristensen, On the non-locality of quasiconvexity, Ann. lnst. H. Poincaré Anal. Non Linéaire 16 (1999), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multidimensional calculus of variations, Preprint MPI-MIS 59/2001.

    Google Scholar 

  37. M. Kružík, Bauer’s maximum principle andhulls of sets, Calc. Var. 11 (2000), 321–332.

    Article  MATH  Google Scholar 

  38. N.H. Kuiper, On C 1 isometric embeddings, I., Nederl Akad. Wetensch. Proc. A 58 (1955), 545–556.

    MathSciNet  Google Scholar 

  39. J. Matoušek, On directional convexity, Discrete Comput. Geom. 25 (2001), 389–403.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Matoušek and P. Plecháč, On functional separately convex hulls, Discrete Comput. Geom. 19 (1998),105–130.

    Article  MathSciNet  Google Scholar 

  41. S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, Geometric analysis and the calculus of variations. (J. Jost, ed.), International Press, 1996,239–251.

    Google Scholar 

  42. S. Müller, Variational models for microstructure and phase transitions. in: Calculus of Variations and Geometric Evolution Problems, Cetaro 1996 (edF. Bethuel, G. Huisken, S. Müller, K. Steffen, S. Hildebrandt, and M. Struwe, eds.), Springer, Berlin, 1999.

    Google Scholar 

  43. S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Research Not. 1999, 1087–1095.

    Google Scholar 

  44. S. Müller and V. Šverák, Unexpected solutions of first and second order partial differential equations, Documenta Math.. Special volume Proc. ICM 1998, Vol. II, 691–702.

    Google Scholar 

  45. S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Preprint MPI-MIS 26/1999.

    Google Scholar 

  46. S. Müller, M.O. Rieger and V. Šverák, Parabolic systems with nowhere smooth solutions, Preprint.

    Google Scholar 

  47. S. Müller and M. Sychev, Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal. 181 (2001), 447–475.

    Article  MathSciNet  MATH  Google Scholar 

  48. F. Murat, L’injection du cone positif de H -1 dans W -1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981), 309–322.

    MathSciNet  MATH  Google Scholar 

  49. J. Nash, C 1 isometric embeddings, Ann. Math. 60 (1954), 383–396.

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Nesi and G.W. Milton, Polycrystalline configurations that maximize electrical resistivity, J. Mech. Phys. Solids 39 (1991), 525–542.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Pedregal, Laminates and microstructure, Europ. J. Appl Math. 4 (1993), 121–149.

    MathSciNet  MATH  Google Scholar 

  52. P. Pedregal, Parametrized measures and variational principles. Birkhäuser, 1997.

    Google Scholar 

  53. V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities, Dissertation, Princeton University, 1974.

    Google Scholar 

  54. D. Serre, Formes quadratiques et calcul des variations, J. Math. Pures Appl. 62 (1983), 177–196.

    MathSciNet  MATH  Google Scholar 

  55. M. Šilhavý, Relaxation in a class of SO(n)-invariant energies related to nematic elastomers, Preprint.

    Google Scholar 

  56. D. Spring, Convex integration theory. Birkhäuser, 1998.

    Google Scholar 

  57. V. Šverák, Examples of rank-one convex functions, Proc. Roy. Soc. Edinburgh A 114 (1990), 237–242.

    Google Scholar 

  58. V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120 (1992), 185–189.

    Article  MATH  Google Scholar 

  59. V. Šverák, New examples of quasiconvex functions, Arch. Rat. Mech. Anal. 119 (1992), 293–300.

    Article  MATH  Google Scholar 

  60. V. Šverák, On Tartar’s conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 405–412.

    MATH  Google Scholar 

  61. V. Šverák, Lower semicontinuity of variational integrals and compensated compactness, in: Proc. ICM 1994 (S.D. Chatterji, ed.), vol. 2, Birkhäuser, 1995, 1153–1158.

    Google Scholar 

  62. V. Šverák and Xiadong Yan, A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. 10 (2000), 213–221.

    Article  MATH  Google Scholar 

  63. M.A. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 773–812.

    Article  MathSciNet  MATH  Google Scholar 

  64. M.A. Sychev, Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. 13 (2001), 213–229.

    Article  MathSciNet  MATH  Google Scholar 

  65. L. Székelyhidi, PhD thesis, in preparation.

    Google Scholar 

  66. L. Tartar, Compensated compactness and partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium Vol. IV, (R. Knops, ed.), Pitman, 1979, 136–212.

    Google Scholar 

  67. L. Tartar, The compensated compactness method applied to systems of conservations laws, in: Systems of Nonlinear Partial Differential Equations. (J.M. Ball, ed.), NATO ASI Series, Vol. C111, Reidel, 1983, 263–285.

    Google Scholar 

  68. L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 193–230.

    Article  MathSciNet  Google Scholar 

  69. L. Tartar, Some remarks on separately convex functions, in: Microstructure and phase transitions. IMA Vol. Math. Appl. 54, (D. Kinderlehrer, R.D. James, M. Luskin and J.L. Ericksen, eds.), Springer, 1993, 191–204.

    Google Scholar 

  70. Kewei Zhang, On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, in: Partial differential equations (Tianjun, 1986), Lecture Notes in Mathematics 1306. Springer, 1988.

    Google Scholar 

  71. Kewei Zhang,On the structure of quasiconvex hulls, Ann. Inst. H. Poincaré Analyse Non Linéaire 15 (1998), 663–686.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirchheim, B., Müller, S., Šverák, V. (2003). Studying Nonlinear pde by Geometry in Matrix Space. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55627-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55627-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44051-2

  • Online ISBN: 978-3-642-55627-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics