Skip to main content

Note on the Isoperimetric Profile of a Convex Body

  • Chapter

Summary

A solution to the relative isoperimetric problem (or partitioning problem) is a subset E of a given set Ω ⊂ ℝn (the container) with prescribed volume |E| =V and minimal area \( \int_\Omega {\left| {D_{XE} } \right|\, = \,A(V)} \) of the interface. Improving a result due to Sternberg & Zumbrun [8], we obtain that if Ω is convex then \( A{(V)^{{\frac{n}{{n - 1}}}}} \) is a concave function of V. As consequence we deduce that the isoperimetric ratio of E is no worse than that of the half-ball contained in ℍ = ℝn-1 X (0, ∞), and that the mean curvature of the minimizer is bounded a priori.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bürger, W., (2001): Das parametrische Partitionsproblem. Dissertation thesis, Universität Freiburg, submitted

    Google Scholar 

  2. Choe, J. (2001): Relative isoperimetric inequality for domains outside a convex set. Preprint, to appear in J. Inequalities Appl.

    Google Scholar 

  3. Gonzales, E., Massari, U., Tamanini, I. (1983): On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J., 32, 25–37

    Article  MathSciNet  Google Scholar 

  4. Grüter, M. (1987): Boundary regularity for solutions of a partitioning problem. Arch. Rational Mech. Analysis, 97, 261–270

    Article  MATH  Google Scholar 

  5. Hildebrandt, S. (1987): Remarks on some isoperimetric problem. In: Cesari, L. (ed) Contributions to modern calculus of variations (Bologna 1985). Pitman Res. Notes Harlow, 108–122

    Google Scholar 

  6. Ros, A., Vergasta, E. (1995): Stability for hypersurfaces of constant mean curvature with free boundary. Geom. Dedicata, 56, 19–33

    Article  MathSciNet  MATH  Google Scholar 

  7. Sternberg, P., Zumbrun, K. (1998): A Poincaré inequality with applications to volumeconstrained surfaces. J. Reine Angew. Math., 503. 63–85

    MathSciNet  MATH  Google Scholar 

  8. Sternberg, P., Zumbrun, K. (1999): On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Comm. Analysis Geom., 7, 199–220

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuwert, E. (2003). Note on the Isoperimetric Profile of a Convex Body. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55627-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55627-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44051-2

  • Online ISBN: 978-3-642-55627-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics