Skip to main content

Role of Signaling Pathway Modification

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

A unique aspect of ionizing radiation as a therapeutic tool is the locoregional application of the cytotoxic therapy without systemic toxicity. However, there are several limitations to the efficacy of radiation treatment: ionizing radiation is mainly effective for the treatment of cancers that have not spread. Furthermore, in patients presenting with locoregional disease, some are cured whereas in others disease recurs and progresses either locally and/or systemically. Some tumors are controlled with high probability by low doses of radiation (e.g., seminomas, lymphomas), others are controlled by moderate to high radiation doses (e.g., breast and prostate adenocarcinomas) and still others will progress even after treatment with high radiation doses, exceeding normal tissue tolerance (e.g., glioblastoma, melanoma). The reason for failure to cure may include treatment-related factors (e.g., metastases out of treatment volume, large volume, unfavorable location) or tumor-related factors (e.g., radiation-resistant tumor cells, limited tolerance of the surrounding normal tissue, hypoxic tumor cells) (Jung and Dritschilo 1996). Research for improvement of radiotherapy focuses on physical and biological aspects: with the improvement of radiation technology (e.g., intensity-modulated radiation therapy [IMRT]) and the introduction of novel imaging techniques (e.g., PET), the control of treatment-related factors has increased. Modern radiobiology focuses on the modulation of molecular processes, thereby overcoming inherent radiation resistance of the tumor cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan-Yorke J, Record M, de Preval C et al (1998) Distinct pathways for tumor necrosis factor alpha and ceramides in human cytomegalovirus infection. J Virol 72:2316–2322

    PubMed  CAS  Google Scholar 

  • Antonadou D (2002) Radiotherapy or chemotherapy followed by radiotherapy with or without amifostine in locally advanced lung cancer. Semin Radiat Oncol 12:50–58

    PubMed  Google Scholar 

  • Attardi LD, Jacks T (1999) The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 55:48–63

    PubMed  CAS  Google Scholar 

  • Balaban N, Moni J, Shannon M et al (1996) The effect of ionizing radiation on signal transduction: antibodies to EGF receptor sensitize A431 cells to radiation. Biochim Biophys Acta 1314:147–156

    PubMed  CAS  Google Scholar 

  • Bartke T, Siegmund D, Peters N et al (2001) p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 20:571–580

    PubMed  CAS  Google Scholar 

  • Begemann M, Kashimawo SA, Choi YA et al (1996) Inhibition of the growth of glioblastomas by CGP 41251, an inhibitor of protein kinase C, and by a phorbol ester tumor promoter. Clin Cancer Res 2:1017–1030

    PubMed  CAS  Google Scholar 

  • Begemann M, Kashimawo SA, Heitjan DF et al (1998) Treatment of human glioblastoma cells with the staurosporine derivative CGP 41251 inhibits CDC2 and CDK2 kinase activity and increases radiation sensitivity. Anticancer Res 18:2275–2282

    PubMed  CAS  Google Scholar 

  • Bellacosa A, de Feo D, Godwin AK et al (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285

    PubMed  CAS  Google Scholar 

  • Bentzen L, Keiding S, Horsman MR et al (2000) Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography — a study evaluating [18F]Fluoro-2-deoxy-D-glucose. Acta Oncol 39:629–637

    PubMed  CAS  Google Scholar 

  • Bernhard EJ, Kao G, Cox AD et al (1996) The farnesyltrans-ferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Res 56:1727–1730

    PubMed  CAS  Google Scholar 

  • Bernhard EJ, McKenna WG, Hamilton AD et al (1998) Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res 58:1754–1761

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV and Fojo T (1999) Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 83: 151–156

    PubMed  CAS  Google Scholar 

  • Bowers G, Reardon D, Hewitt T et al (2001) The relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 20:1388–1397

    PubMed  CAS  Google Scholar 

  • Brizel DM, Wasserman TH, Henke M et al (2000) Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 18:3339–3345

    PubMed  CAS  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  • Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    PubMed  CAS  Google Scholar 

  • Brown JM (1999) The hypoxic cell: a target for selective cancer therapy — eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  • Brown JM (2001) Therapeutic targets in radiotherapy. Int J Radiat Oncol Biol Phys 49:319–326

    PubMed  CAS  Google Scholar 

  • Bruns CJ, Solorzano CC, Harbison MT et al (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60:2926–2935

    PubMed  CAS  Google Scholar 

  • Buntzel J, Glatzel M, Kuttner K et al (2002) Amifostine in simultaneous radiochemotherapy of advanced head and neck cancer. Semin Radiat Oncol 12:4–13

    PubMed  Google Scholar 

  • Chao KS, Deasy JO, Markman J et al (2001) A prospective study of salivary function sparing in patients with head and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int J Radiat Oncol Biol Phys 49:907–916

    PubMed  CAS  Google Scholar 

  • Chmura SJ, Nodzenski E, Weichselbaum RR et al (1996a) Protein kinase C inhibition induces apoptosis and ceramide production through activation of a neutral sphingomyelinase. Cancer Res 56:2711–2714

    PubMed  CAS  Google Scholar 

  • Chmura SJ, Nodzenski E, Crane MA et al (1996b) Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231. Adv Exp Med Biol 406:39–55

    PubMed  CAS  Google Scholar 

  • Chmura SJ, Mauceri HJ, Advani S et al (1997) Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res 57:4340–4347

    PubMed  CAS  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ et al (1993) Thymocyte apoptosis induced by p53-dependent and-independent pathways. Nature 362:849–852

    PubMed  CAS  Google Scholar 

  • Clarke AR, Gledhill S, Hooper ML et al (1994) p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene 9:1767–1773

    PubMed  CAS  Google Scholar 

  • Coleman CN (2002) Radiation oncology — linking technology and biology in the treatment of cancer. Acta Oncol 41:6–13

    PubMed  Google Scholar 

  • Cortez D, Wang Y, Qin J et al (1999) Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    PubMed  CAS  Google Scholar 

  • Davies MA, Lu Y, Sano T et al (1998) Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 58: 5285–5290

    PubMed  CAS  Google Scholar 

  • Derynck R, Goeddel DV, Ullrich A et al (1987) Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res 47:707–712

    PubMed  CAS  Google Scholar 

  • Downward J (1998) Ras signalling and apoptosis. Curr Opin Genet Dev 8:49–54

    PubMed  CAS  Google Scholar 

  • Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271

    PubMed  CAS  Google Scholar 

  • Eisbruch A, Kim HM, Terrell JE et al (2001) Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 50:695–704

    PubMed  CAS  Google Scholar 

  • Fabbro D, Buchdunger E, Wood J et al (1999) Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent. Pharmacol Ther 82: 293–301

    PubMed  CAS  Google Scholar 

  • Fuks Z, Persaud RS, Alfieri A et al (1994) Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 54:2582–2590

    PubMed  CAS  Google Scholar 

  • Fuks Z, Alfieri A, Haimovitz-Friedman A et al (1995) Intravenous basic fibroblast growth factor protects the lung but not mediastinal organs against radiation-induced apoptosis in vivo. Cancer J Sci Am 1:62

    PubMed  CAS  Google Scholar 

  • Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivers E, Oshinka H, Hallahan DE (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419

    PubMed  CAS  Google Scholar 

  • Gescher A (1998) Analogs of staurosporine: potential anticancer drugs? Gen Pharmacol 31:721–728

    PubMed  CAS  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    PubMed  CAS  Google Scholar 

  • Goffman TE, Glatstein E (2002) Intensity-modulated radiation therapy. Radiat Res 158:115–117

    PubMed  CAS  Google Scholar 

  • Gorski D, Beckett M, Jaskowiak N et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionising radiation. Cancer Res 59:3374–3378

    PubMed  CAS  Google Scholar 

  • Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4

    PubMed  CAS  Google Scholar 

  • Gupta AK, Bakanauskas VJ, Cerniglia GJ et al (2001) The Ras radiation resistance pathway. Cancer Res 61:4278–4282

    PubMed  CAS  Google Scholar 

  • Hahn SM, Mitchell JB, Shacter E (1997) Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage. Free Radic Biol Med 23:879–884

    PubMed  CAS  Google Scholar 

  • Hahn SM, Krishna MC, DeLuca AM et al (2000) Evaluation of the hydroxylamine Tempol-H as an in vivo radioprotector. Free Radic Biol Med 28:953–958

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D et al (1994a) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Balaban N, McLoughlin M et al (1994b) Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 54:2591–2597

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Ceramide signaling in apoptosis. Br Med Bull 53:539–553

    PubMed  CAS  Google Scholar 

  • Hall EJ (2000) Radiobiology for the radiologist. Lippincott Williams and Wilkins, Philadephia

    Google Scholar 

  • Hanahan DE, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Sukhatme VP, Sherman ML et al (1991a) Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci U S A 88: 2156–2160

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Virudachalam S, Sherman ML et al (1991b) Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation. Cancer Res 51:4565–4569

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Virudachalam S, Beckett M et al (1991c) Mechanisms of X-ray-mediated protooncogene c-jun expression in radiation-induced human sarcoma cell lines. Int J Radiat Oncol Biol Phys 21:1677–1681

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Virudachalam S, Schwartz JL et al (1992) Inhibition of protein kinases sensitizes human tumor cells to ionizing radiation. Radiat Res 129:345–350

    PubMed  CAS  Google Scholar 

  • Harari PM, Huang SM (2001) Radiation response modification following molecular inhibition of epidermal growth factor receptor signaling. Semin Radiat Oncol 11:281–289

    PubMed  CAS  Google Scholar 

  • Hendry JH, Potten CS (1982) Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by a loss of clonogenicity. Int J Radiat Biol Relat Stud Phys Chem Med 42:621–628

    PubMed  CAS  Google Scholar 

  • Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    PubMed  CAS  Google Scholar 

  • Hess C, Vuong V, Hegyi I et al (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85:2010–2016

    PubMed  CAS  Google Scholar 

  • Hill MM, Andjelkovic M, Brazil DP et al (2001) Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem 276:25643–25646

    PubMed  CAS  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT et al (2002) Transcriptional repression of the anti-apoptotic surviving gene by wild type p53. J Biol Chem 277:3247–3257

    PubMed  CAS  Google Scholar 

  • Ikegami Y, Yano S, Nakao K (1996) Effects of the new selective protein kinase C inhibitor 4’-N-benzoyl staurosporine on cell cycle distribution and growth inhibition in human small cell lung cancer cells. Arzneimittelforschung 46:201–204

    PubMed  CAS  Google Scholar 

  • Johansson S, Svensson H, Denekamp J (2000) Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int J Radiat Oncol Biol Phys 48:745–750

    PubMed  CAS  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164

    PubMed  CAS  Google Scholar 

  • Jung M, Dritschilo A (1996) Signal transduction and cellular responses to ionizing radiation. Semin Radiat Oncol 6: 268–272

    PubMed  Google Scholar 

  • Kaleko M, Rutter WJ, Miller AD (1990) Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol 10:464–473

    PubMed  CAS  Google Scholar 

  • Kennedy SG, Wagner AJ, Conzen SD et al (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11:701–713

    PubMed  CAS  Google Scholar 

  • Kennedy SG, Kandel ES, Cross TK et al (1999) Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810

    PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    PubMed  CAS  Google Scholar 

  • Khanna KK, Lavin MF, Jackson SP et al (2001) ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 8:1052–1065

    PubMed  CAS  Google Scholar 

  • Kim CY, Giaccia AJ, Strulovici B et al (1992) Differential expression of protein kinase C epsilon protein in lung cancer cell lines by ionising radiation. Br J Cancer 66:844–849

    PubMed  CAS  Google Scholar 

  • Kinsella TJ, Mitchell JB, Russo A et al (1984) The use of halogenated thymidine analogs as clinical radiosensitizers: rationale, current status, and future prospects: non-hypoxic cell sensitizers. Int J Radiat Oncol Biol Phys 10:1399–1406

    PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Life (and death) in a malignant tumour. Nature 379:19–20

    PubMed  CAS  Google Scholar 

  • Kolesnick R (1994) Signal transduction through the sphingomyelin pathway. Mol Chem Neuropathol 21:287–297

    PubMed  CAS  Google Scholar 

  • Kolibaba KS, Druker BJ (1997) Protein tyrosine kinases and cancer. Biochim Biophys Acta 1333:F217–F248

    PubMed  CAS  Google Scholar 

  • Komaki R, Lee JS, Kaplan B et al (2002) Randomized phase III study of chemoradiation with or without amifostine for patients with favorable performance status inoperable stage II-III non-small cell lung cancer: preliminary results. Semin Radiat Oncol 12:46–49

    PubMed  CAS  Google Scholar 

  • Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    PubMed  CAS  Google Scholar 

  • Kuppusamy P, Wang P, Shankar RA et al (1998) In vivo topical EPR spectroscopy and imaging of nitroxide free radicals and polynitroxyl-albumin. Magn Reson Med 40:806–811

    PubMed  CAS  Google Scholar 

  • La Rosee P, O’Dwyer ME, Druker BJ (2002) Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia 16:1213–1219

    Google Scholar 

  • Lavin MF (1998) Radiation-induced cell death and its implications in human disease. In: Kumar S (ed) Apoptosis: mechanisms and role in disease. Springer, Berlin Heidelberg New York, pp 213–232

    Google Scholar 

  • Lawrence TS, Eisbruch A, McGinn CJ et al (1999) Radiosensitization by gemcitabine. Oncology (Huntingt) 13:55–60

    CAS  Google Scholar 

  • Lee JS, Collins KM, Brown AL et al (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204

    PubMed  CAS  Google Scholar 

  • Lin X, Fuks Z, Kolesnick R (2000) Ceramide mediates radiation-induced death of endothelium. Crit Care Med 28: N87–N93

    PubMed  CAS  Google Scholar 

  • Ling CC, Endlich B (1989) Radioresistance induced by oncogenic transformation. Radiat Res 120:267–279

    PubMed  CAS  Google Scholar 

  • Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47: 551–560

    PubMed  CAS  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW et al (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849

    PubMed  CAS  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A et al (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810

    PubMed  CAS  Google Scholar 

  • Marathe S, Schissel SL, Yellin MJ et al (1998) Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 273:4081–4088

    PubMed  CAS  Google Scholar 

  • Maurizi M, Almadori G, Ferrandina G et al (1996) Prognostic significance of epidermal growth factor receptor in laryngeal squamous cell carcinoma. Br J Cancer 74: 1253–1257

    PubMed  CAS  Google Scholar 

  • Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/ Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98: 11598–11603

    PubMed  CAS  Google Scholar 

  • McKenna WG, Weiss MC, Bakanauskas VJ et al (1990) The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys 18:849–859

    PubMed  CAS  Google Scholar 

  • Mendelsohn J (2001) The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer 8:3–9

    PubMed  CAS  Google Scholar 

  • Merritt AJ, Potten CS, Kemp CJ et al (1994) The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54:614–617

    PubMed  CAS  Google Scholar 

  • Merritt AJ, Allen TD, Potten CS et al (1997) Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma irradiation. Oncogene 14:2759–2766

    PubMed  CAS  Google Scholar 

  • Miller LS, Lombardo TW, Fowler SC (1992) Time of day effects on a human force discrimination task. Physiol Behav 52: 839–841

    PubMed  CAS  Google Scholar 

  • Miller EM, Fowler JF, Kinsella TJ (1992) Linear-quadratic analysis of radiosensitization by halogenated pyrimidines. II. Radiosensitization of human colon cancer cells by bromodeoxyuridine. Radiat Res 131:90–97

    PubMed  CAS  Google Scholar 

  • Miller AC, Kariko K, Myers CE et al (1993) Increased radioresistance of EJras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. Int J Cancer 53:302–307

    PubMed  CAS  Google Scholar 

  • Moroni MC, Hickman ES, Denchi EL et al (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3: 552–558

    PubMed  CAS  Google Scholar 

  • O’Connor PM, Jackman J, Bae I et al (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57:4285–4300

    PubMed  Google Scholar 

  • Okano J, Gaslightwala I, Birnbaum MJ et al (2000) Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 275:30934–30942

    PubMed  CAS  Google Scholar 

  • Overgaard J (1989) Sensitization of hypoxic tumour cells — clinical experience. Int J Radiat Biol 56:801–811

    PubMed  CAS  Google Scholar 

  • Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509–518

    PubMed  CAS  Google Scholar 

  • Overgaard J (1995) Modification of hypoxia-from Gotwald Schwarz to nicotinamide: have we learned the lesson? Danish Cancer Society. In: Kogelnik HD(ed) Progress in radiation oncology V. International proceedings division. Bologna, Italy, pp 469–475

    Google Scholar 

  • Overgaard J, Hansen HS, Overgaard M et al (1998) A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 46:135–146

    PubMed  CAS  Google Scholar 

  • Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    PubMed  CAS  Google Scholar 

  • Pena LA, Fuks Z, Kolesnick R (1997) Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol 53: 615–621

    PubMed  CAS  Google Scholar 

  • Penuel E, Schaefer G, Akita RW et al (2001) Structural requirements for ErbB2 transactivation. Semin Oncol 28:36–42

    PubMed  CAS  Google Scholar 

  • Pruschy M, Resch H, Shi YQ et al (1999) Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells. Br J Cancer 80:693–698

    PubMed  CAS  Google Scholar 

  • Pruschy M, Rocha S, Zaugg K et al (2001) Key targets for the execution of radiation-induced tumor cell apoptosis: the role of p53 and caspases. Int J Radiat Oncol Biol Phys 49: 561–567

    PubMed  CAS  Google Scholar 

  • Radford IR, Murphy TK (1994) Radiation response of mouse lymphoid and myeloid cell lines, part III. Different signals can lead to apoptosis and may influence sensitivity to killing by DNA double-strand breakage. Int J Radiat Biol 65: 229–239

    PubMed  CAS  Google Scholar 

  • Rauth AM, Melo T, Misra V (1998) Bioreductive therapies: an overview of drugs and their mechanisms of action. Int J Radiat Oncol Biol Phys 42:755–762

    PubMed  CAS  Google Scholar 

  • Robertson SC, Tynan JA, Donoghue DJ (2000) RTK mutations and human syndromes when good receptors turn bad. Trends Genet 16:265–271

    PubMed  CAS  Google Scholar 

  • Rocha S, Soengas MS, Lowe SW et al (2000) Protein kinase C inhibitor and irradiation-induced apoptosis: relevance of the cytochrome c-mediated caspase-9 death pathway. Cell Growth Differ 11:491–499

    PubMed  CAS  Google Scholar 

  • Ron E, Modan B, Boice JD Jr et al (1988a) Tumors of the brain and nervous system after radiotherapy in childhood. N EnglJMed 319:1033–1039

    CAS  Google Scholar 

  • Ron E, Modan B, Boice JD Jr (1988b) Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol 127: 713–725

    PubMed  CAS  Google Scholar 

  • Ron E, Lubin JH, Shore RE et al (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    PubMed  CAS  Google Scholar 

  • Roth JA, Grammer SF, Swisher SG et al (2001) Gene therapy approaches for the management of non-small cell lung cancer. Semin Oncol 28:50–56

    PubMed  CAS  Google Scholar 

  • Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13:332–337

    PubMed  CAS  Google Scholar 

  • Salinas M, Lopez-Valdaliso R, Martin D et al (2000) Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol CellNeurosci 15:156–169

    CAS  Google Scholar 

  • Salomon DS, Brandt R, Ciardiello F et al (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19: 183–232

    PubMed  CAS  Google Scholar 

  • Santana P, Llanes L, Hernandez I et al (1995) Ceramide mediates tumor necrosis factor effects on P450-aromatase activity in cultured granulosa cells. Endocrinology 136:2345–2348

    PubMed  CAS  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A et al (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199

    PubMed  CAS  Google Scholar 

  • Sarkaria JN, Eshleman JS (2001) ATM as a target for novel radiosensitizers. Semin Radiat Oncol 11:316–327

    PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich RK, Dent P, Grant S et al (2000) Signal transduction and cellular radiation responses. Radiat Res 153: 245–257

    PubMed  CAS  Google Scholar 

  • Sentman CL, Shutter JR, Hockenbery D et al (1991) Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879–888

    PubMed  CAS  Google Scholar 

  • Sherman ML, Datta R, Hallahan DE et al (1991) Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. J Clin Invest 87:1794–1797

    PubMed  CAS  Google Scholar 

  • Spitz FR, Nguyen D, Skibber JM et al (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2: 1665–1671

    PubMed  CAS  Google Scholar 

  • Stambolic V, MacPherson D, Sas D et al (2001) Regulation of PTEN transcription by p53. Mol Cell 8:317–325

    PubMed  CAS  Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    PubMed  CAS  Google Scholar 

  • Stephens LC, Ang KK, Schultheiss TE et al (1991) Apoptosis in irradiated murine tumors. Radiat Res 127:308–316

    PubMed  CAS  Google Scholar 

  • Strasser A, Harris AW, Jacks T et al (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79: 329–339

    PubMed  CAS  Google Scholar 

  • Stubbs M (1999) Application of magnetic resonance techniques for imaging tumour physiology. Acta Oncol 38: 845–853

    PubMed  CAS  Google Scholar 

  • Sun LQ, Li YX, Guillou L et al (1997) Antitumor and radio-sensitizing effects of (E)-2′-deoxy-2′-(fluoromethylene) cytidine, a novel inhibitor of ribonucleoside diphosphate reductase, on human colon carcinoma xenografts in nude mice. Cancer Res 57:4023–4028

    PubMed  CAS  Google Scholar 

  • Swisher SG, Roth JA, Nemunaitis J et al (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91:763–771

    PubMed  CAS  Google Scholar 

  • Tenzer A, Zingg D, Rocha S et al (2001) The phosphati-dylinositide 3′-kinase/Akt survival pathway is a target for the anticancer and radiosensitizing agent PKC412, an inhibitor of protein kinase C. Cancer Res 61:8203–8210

    PubMed  CAS  Google Scholar 

  • Tibbetts RS, Cortez D, Brumbaugh KM et al (2000) Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 14:2989–3002

    PubMed  CAS  Google Scholar 

  • Verheij M, Bose R, Lin XH et al (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380:75–79

    PubMed  CAS  Google Scholar 

  • Verheij M, Bartelink H (2000) Radiation-induced apoptosis. Cell Tissue Res 301:133–142

    PubMed  CAS  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    PubMed  CAS  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  • Ward JF (1994) The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol 66:427–432

    PubMed  CAS  Google Scholar 

  • Wasserman TH, Chapman JD, Coleman CN et al (1997) Chemical modifiers of radiation. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology. Lippincott-Raven, Philadelphia, pp 685–704

    Google Scholar 

  • Weisberg E, Boulton C, Kelly LM et al (2002) Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1:433–443

    PubMed  CAS  Google Scholar 

  • Wu Y, Mehew JW, Heckman CA et al (2001) Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20:240–251

    PubMed  CAS  Google Scholar 

  • Zaugg K, Rocha S, Resch H et al (2001) Differential p53-dependent mechanism of radiosensitization in vitro and in vivo by the protein kinase C-specific inhibitor PKC412. Cancer Res 61:732–738

    PubMed  CAS  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    PubMed  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982

    PubMed  CAS  Google Scholar 

  • Zhu A, Shaeffer J, Leslie S et al (1996) Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation. Int J Radiat Oncol Biol Phys 34:809–815

    PubMed  CAS  Google Scholar 

  • Zundel W, Giaccia A (1998) Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev 12: 1941–1946

    PubMed  CAS  Google Scholar 

  • Zundel W, Schindler C, Haas-Kogan D et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

  • Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riesterer, O., Pruschy, M., Bodis, S. (2003). Role of Signaling Pathway Modification. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics