Advertisement

Toward in vivo Digital Circuits

  • Ron Weiss
  • George E. Homsy
  • Thomas F. KnightJr.
Part of the Natural Computing Series book series (NCS)

Abstract

We propose a mapping from digital logic circuits into genetic regulatory networks with the following property: the chemical activity of such a genetic network in vivo implements the computation specified by the corresponding digital circuit. Logic signals are represented by the synthesis rates of cytoplasmic DNA binding proteins. Gates consist of structural genes for output proteins, fused to promoter/operator regions that are regulated by input proteins. The modular approach for building gates allows a free choice of signal proteins and thus enables the construction of complex circuits. This paper presents simulation results that demonstrate the feasibility of this approach. Furthermore, a technique for measuring gate input/output characteristics is introduced. We will use this technique to evaluate gates constructed in our laboratory. Finally, this paper outlines automated logic design and presents BioSpice, a prototype system for the design and verification of genetic digital circuits.

Keywords

Output Protein Digital Circuit Complex Circuit Genetic Regulatory Network NAND Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arkin and J. Ross. Computational functions in biochemical reaction net-works. Biophysical Journal, 67:560–578, August 1994.CrossRefGoogle Scholar
  2. 2.
    James U. Bowie and Robert T. Sauer. Identification of C-terminal extensionsthat protect proteins from intracellular proteolysis. Journal of Biological Chemistry, 264(13):7596–7602, 1989.Google Scholar
  3. 3.
    David E. Draper. Translational initiation. In Frederick C. Neidhardt, editor, Escherichia Coli and Salmonella, pages 902–908. ASM Press, Washington, D.C., 2nd edition, 1992.Google Scholar
  4. 4.
    Alice Longobardi Givan. Flow Cytometry: First Principles. Wiley-Liss, New York, 1992.Google Scholar
  5. 5.
    Roger W. Hendrix. Lambda IL Cold Spring Harbor Press, Cold Spring Harbor, New York, 1983.Google Scholar
  6. 6.
    Peter H. von Hippel, Thomas D. Yager, and Stanley C. Gill. Quantitative aspects of the transcription cycle in Escherichia coli. In Transcriptional Regulation, pages 179–201. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992.Google Scholar
  7. 7.
    A. Hjelmfelt, E. D. Weinberger, and J. Ross. Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sei., 88:10983–10987, December 1991.zbMATHCrossRefGoogle Scholar
  8. 8.
    M. Thomas Record Jr., Wilham S. Reznikoff, Maria L. Craig, Kristi L. McQuade, and Paula J. Schlax. Escherichia coli RNA polymerase (eσ 70), promoters, and the kinetics of the steps of transcription initiation. In Frederick C. Neidhardt, editor, Escherichia coli and Salmonella, pages 792–821. ASM Press, Washington, D.C., 2nd edition, 1992.Google Scholar
  9. 9.
    S. A. Kauffman. Gene regulation networks: a theory for their global structure and bahviors. In A. Moscona and A. Monroy, editors. Current Topics in Developmental Biology, volume 6, pages 145–182. Academic Press, New York, 1971.Google Scholar
  10. 10.
    Thomas F. Knight, Jr. and Gerald Jay Sussman. Cellular gate technology. In C.S. Calude, J. Casti, and M.J. Dinneen, editors. First International Conference on Unconventional Models of Computation, pages 257–272, Auckland, NZ, 1998. Springer-Verlag.Google Scholar
  11. 11.
    Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sei., 94:814–819, February 1997.CrossRefGoogle Scholar
  12. 12.
    Harley H. McAdams and Adam Arkin. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struc, 27:199–224, 1998.CrossRefGoogle Scholar
  13. 13.
    Harley H. McAdams and Lucy Shapiro. Circuit simulation of genetic networks. Science, 269(5224):650–656, August 1995.CrossRefGoogle Scholar
  14. 14.
    J. Monod and F. Jacob. Cellular Regulatory Mechanisms, pages 389–401. Cold Spring Harbor Press, New York, 1961.Google Scholar
  15. 15.
    Frederick C. Neidhardt and Michael A. Savageau. Regulation beyond the Operon. In Frederick C. Neidhardt, editor, Escherichia coli and Salmonella, pages 1310–1324. ASM Press, Washington, D.C., 2nd edition, 1992.Google Scholar
  16. 16.
    Andrew A. Pakula and Robert T. Sauer. Genetic analysis of protein stability and function. Annual Review of Genetics, 23:289–310, 1989.CrossRefGoogle Scholar
  17. 17.
    Dawn A. Parsell, Karen R. Silber, and Robert T. Sauer. Carboxy-terminal determinants of intracellular protein degradation. Genes and Development, 4:277–286, 1990.CrossRefGoogle Scholar
  18. 18.
    Mark Ptashne. A Genetic Switch: Phage lambda and Higher Organisms. Cell Press and Blackwell Scientific Publications, Cambridge, MA, 2nd edition, 1986.Google Scholar
  19. 19.
    O. Roessler. J. Theor. Biol., 36:413–417, 1972.CrossRefGoogle Scholar
  20. 20.
    O. Roessler. In M. Conrad, W. Guettinger, and M. Dal Cin, editors. Lecture Notes in Biomathematics 4, pages 399–418. Springer, Berlin, 1974.Google Scholar
  21. 21.
    O. Roessler. In M. Conrad, W. Guettinger, and M. Dal Cin, editors. Lecture Notes in Biomathematics 4, pages 546–582. Springer, Berlin, 1974.Google Scholar
  22. 22.
    F. Seelig and O. Roessler. Z. Naturforsch, 27:1441–1444, 1972.Google Scholar
  23. 23.
    M. Sugita. Functional analysis of chemical systems in vivo using a logic circuit equivalent. J. Theor. Biol., 4:179–192, 1963.CrossRefGoogle Scholar
  24. 24.
    R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol, 42:563–585, 1973.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ron Weiss
  • George E. Homsy
  • Thomas F. KnightJr.

There are no affiliations available

Personalised recommendations