Skip to main content

A Sum of Squares Theorem for Visibility Complexes and Applications

  • Chapter
Discrete and Computational Geometry

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

  • 1523 Accesses

Abstract

We present a new method to implement in constant amortized time the flip operation of the so-called Greedy Flip Algorithm, an optimal algorithm to compute the visibility complex of a collection of pairwise disjoint bounded convex sets of constant complexity (disks). The method uses simple data structures and only the left-turn predicate for disks; it relies, among other things, on a sum of squares like theorem for visibility complexes stated and proved in this paper. (The sum of squares theorem for a simple arrangement of lines states that the average value of the square of the number of vertices of a face of the arrangement is bounded by a constant.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] J. Abello and K. Kumar. Visibility graphs and oriented matroids. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD#x2019;94), volume 894 of Lecture Notes Comput. Sci., pages 147¨C158. Springer-Verlag, 1995.

    Google Scholar 

  2. P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang. Deformable free space tiling for kinetic collision detection. In B. Donald, K. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions (Proc. 4th Workshop Algorithmic Found. Robotics), pages 83¨C96,2001.

    Google Scholar 

  3. P. Angelier. Algorithmique des graphes de visibilit¡äe. PhD thesis, Ecole Normale Sup¡äerieure (Paris), February 2002.

    Google Scholar 

  4. B. Aronov, J. Matoušek, and M. Sharir. On the sum of squares of cell complexities in hyperplane arrangements. J. Combin. Theor8er. A, 65:311¨C321,1994.

    Article  MATH  Google Scholar 

  5. T. Asano, S. K. Ghosh, and T. C. Shermer. Visibility in the plane. In J.-R. Sack and J. Urrutia, editors, Handbook of ComputationalGe ometry, pages 829¨C876. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Google Scholar 

  6. S. Bespamyatnikh. An efficient algorithm for enumeration of triangulations.10th Annual Fall Workshop on Computational Geometry. http://www.cs.ubc.ca/~besp/cgw.ps.gz/~besp/cgw.ps.gz 2000.

  7. A. Bjöorner, M. Las Vergnas, N. White, B. Sturmfels, and G. M. Ziegler. Oriented Matroids. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  8. H. Bröonnimann, L. Kettner, M. Pocchiola, and J. Snoeyink. Counting and enumerating pseudotriangulations with the greedy flip algorithm. Submitted for publication, 2001.

    Google Scholar 

  9. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12:54¨C68, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25:76¨C90, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Cho and D. Forsyth. Interactive ray tracing with the visibility complex. Computers and Graphics (Special Issue on Visibility - Techniques and Applications),23(5):703¨C717, 1999. A Sum of Squares Theorem 135

    Google Scholar 

  12. R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying polygonal cycles. In Proc. 41th Annu. IEEE Sympos. Found.Comput. Sci., pages 432¨C442, 2000.

    Google Scholar 

  13. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany,2nd edition, 2000.

    Google Scholar 

  14. F. Durand, G. Drettakis, and C. Puech. Fast and accurate hierarchical radiosity using global visibility. ACM Transactions on Graphics, 18(2):128¨C170,1999.

    Article  Google Scholar 

  15. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on TheoreticalCom puter Science. Springer-Verlag, Heidelberg, West Germany, 1987.

    Google Scholar 

  16. H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput. Syst. Sci., 38:165¨C194, 1989. Corrigendum in 42 (1991), 249¨C251.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput., 15:341¨C363, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. E. Goodman. Pseudoline arrangements. In J. E. Goodman and J. O#x2019;Rourke, editors, Handbook of Discrete and ComputationalGe ometry, chapter 5, pages 83¨C110. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  19. M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms,23:51¨C73, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. L. Gross and T. W. Tucker. Topological Graph Theory. John Wiley & Sons,1987.

    Google Scholar 

  21. M. Hagedoorn, M. Overmars, and R. C. Veltkamp. A robust affine invariant similarity measure based on visibility. In Abstracts 16th European Workshop Comput. Geom., pages 112¨C116. Ben-Gurion University of the Negev, 2000.

    Google Scholar 

  22. D. Halperin. Arrangements. In J. E. Goodman and J. O#x2019;Rourke, editors, Handbook of Discrete and ComputationalGe ometry, chapter 21, pages 389¨C412. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  23. D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for simple polygons. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 322¨C329, 2000.

    Google Scholar 

  24. D. Kirkpatrick and B. Speckmann. Separation sensitive kinetic separation for convex polygons. In Proc. Japan Conf Disc. Comp. Geom., number 2098 in Lecture Notes Comput. Sci., pages 222¨C236. Springer Verlag, 2001.

    Google Scholar 

  25. D. Kirkpatrick and B. Speckmann. Kinetic maintenance of context-sensitive hierarchical representations of disjoint simple polygons. In Proc. 18th Annu. ACM Sympos. Comput. Geom., pages 179¨C188, 2002.

    Google Scholar 

  26. D. E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes Comput. Sci. Springer-Verlag, Heidelberg, Germany, 1992.

    Google Scholar 

  27. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,1991.136 P. Angelier and M. Pocchiola

    Book  Google Scholar 

  28. P. MacMullen. Modern developments in regular polytopes. In T. Bisztriczky,P. McMullen, R. Schneider, and A. I.Weiss, editors, Polytopes: Abstract, Convex and Computational, pages 97¨C124. Kluwer Academic Publischers, 1994.

    Google Scholar 

  29. W. S. Massey. A Basic Course in Algebraic Topology. Springer-Verlag, 1991.

    Google Scholar 

  30. G. McCarty. Topology: An Introduction with Application to Topological Groups. Dover, 1988.

    Google Scholar 

  31. J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and J. O#x2019;Rourke, editors, Handbook of Discrete and ComputationalGe ometry, chapter 24, pages 445¨C466. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  32. J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.- R. Sack and J. Urrutia, editors, Handbook of ComputationalGe ometry, pages 633¨C701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Chapter  Google Scholar 

  33. N. Nilsson. A mobile automaton: An application of artificial intelligence techniques. In Proc. IJCAI, pages 509¨C520, 1969.

    Google Scholar 

  34. J. O’Rourke. Visibility. In J. E. Goodman and J. O#x2019;Rourke, editors, Handbook of Discrete and ComputationalGe ometry, chapter 25, pages 467¨C480. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  35. J. O#x2019;Rourke. Computational geometry column 39. SIGACT News, 31(3):47¨C49, 2000.

    Article  Google Scholar 

  36. J. O#x2019;Rourke and I. Streinu. Vertex-edge pseudo-visibility graphs: Characterization and recognition. In Proc. 13th Annu. ACM Sympos. Comput. Geom.,pages 119¨C128, 1997.                                                     

    Google Scholar 

  37. J. O’Rourke and I. Streinu. The vertex-edge visibility graph of a polygon. Comput. Geom. Theory Appl., 10:105¨C120, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Pocchiola. Computing pseudo-triangulations efficiently. In preparation,2002.

    Google Scholar 

  39. M. Pocchiola and G. Vegter. Order types and visibility types of configurations of disjoint convex plane sets (extended abstract). Technical Report 94-4, Labo. Inf. Ens, Jan. 1994.

    Google Scholar 

  40. M. Pocchiola and G. Vegter. Minimal tangent visibility graphs. Comput.Geom. Theory Appl., 6:303¨C314, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Pocchiola and G. Vegter. Pseudo-triangulations: Theory and applications.In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 291¨C300, 1996.

    Google Scholar 

  42. M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via pseudo-triangulations. Discrete Comput. Geom., 16:419¨C453, Dec. 1996.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Pocchiola and G. Vegter. The visibility complex. Internat. J. Comput.Geom. Appl., 6(3):279–308, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Pocchiola and G. Vegter. On polygonal covers. In B. Chazelle, J. Goodman,and R. Pollack, editors, Advances in Discrete and ComputationalGe ometry,volume 223 of Contemporary Mathematics, pages 257¨C268. AMS, Providence,1999.

    Google Scholar 

  45. D. Randall, G. Rote, F. Santos, and J. Snoeyink. Counting triangulations and pseudo-triangulations of wheels. In Proc. 13th CCCG, Univ. ofWaterloo,Ont, 2001.A Sum of Squares Theorem 137       

    Google Scholar 

  46. S. Riviére. Calculs de Visibilit¡äe dans un Environnement 2D. PhD thesis,Universit¡äe Joseph Fourier, Grenoble, France, 1997.

    Google Scholar 

  47. S. Rivi¨¨re, R. Orti, F. Durand, and C. Puech. Using the visibility complex for radiosity computation. In ACM Workshop Appl. Comput. Geom., May 1996.

    Google Scholar 

  48. G. Rote, F. Santos, and I. Streinu. Expansive motions and the polytope of pointed pseudo-triangulations. Manuscript, 2001.

    Google Scholar 

  49. I. Streinu. Stretchability of star-like pseudo-visibility graphs. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 274¨C280, 1999.

    Google Scholar 

  50. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In Proc. 41th Annu. IEEE Sympos. Found. Comput. Sci., pages 443¨C453, 2000.

    Google Scholar 

  51. W. Thurston. Three-Dimensional Geometry and Topology, Volume 1. Princeton University Press, New Jersey, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angelier, P., Pocchiola, M. (2003). A Sum of Squares Theorem for Visibility Complexes and Applications. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics