Skip to main content

Jacobi Decomposition and Eigenvalues of Symmetric Matrices

  • Chapter
Discrete and Computational Geometry

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

  • 1555 Accesses

Abstract

We show that every n-dimensional orthogonal matrix can be factored into O(n 2) Jacobi rotations (also called Givens rotations in the literature). It is well known that the Jacobi method,wh ich constructs the eigen-decomposition of a symmetric matrix through a sequence of Jacobi rotations,is slower than the eigenvalue algorithms currently used in practice,but is capable of computing eigenvalues, particularly tiny ones,t o a high relative accuracy. The above decomposition, which to the best of our knowledge is new,s hows that the infinite-precision nondeterministic Jacobi method (in which an oracle is invoked to obtain the correct rotation angle in each Jacobi rotation) can construct the eigen-decomposition with O(n 2) Jacobi rotations. The complexity of the nondeterministic Jacobi algorithm motivates the efforts to narrow the gap between the complexity of the known Jacobi algorithms and that of the nondeterministic version. Speeding up the Jacobi algorithm while retaining its excellent numerical properties would be of considerable interest. In that direction,we describe,as an example,a variant of the Jacobi method in which the rotation angle for each Jacobi rotation is computed (in closed-form) through 1-dimensional optimization. We also show that the computation of the closed-form optimal solution of the 1-dimensional problems guarantees convergence of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldi W.E. The principle of minimized iteration in the solution of the matrix eigenproblem. Quart. Appl. Math. 9 (1951) 17–29.

    MathSciNet  MATH  Google Scholar 

  2. Brent R.P. and Luk F.T. The solution of singular value and symmetric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Statist. Comput. 6 (1985) 69–84.

    Article  MathSciNet  MATH  Google Scholar 

  3. Burnside W.S. and Panton A.W. The Theory of Equations,Dublin University Press Series, Dublin, Ireland, 1892.

    MATH  Google Scholar 

  4. Crouzeix M.,Philippe B. and Sadkane M. The Davidson method. SIAMJ. Sci. Comput. 15 (1994) 62–76.

    MathSciNet  MATH  Google Scholar 

  5. Cullum J. and Willoughby R.A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Vol. I, Birkhäuser, Boston, MA,1985.

    Google Scholar 

  6. Cullum J. and Willoughby R.A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Vol. II, Birkhäuser, Boston, MA,1985.

    MATH  Google Scholar 

  7. Cullum J. and Willoughby R.A. A practical procedure for computing eigenvalues of large sparse nonsymmetric matrices. In: Cullum J.,Willoughby R.A. (Eds.),Large Scale Eigenvalue Problems, Amsterdam, North-Holland,1986, pp. 193–240.

    Chapter  Google Scholar 

  8. Cuppen J.J.M. A divide and conquer method for the symmetric eigenproblem. Numer. Math. 36 (1981) 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  9. Davidson E.R. The iterative calculation of a fewof the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices. J. Comput. Phys. 17 (1975) 87–94.

    Article  MATH  Google Scholar 

  10. Demmel J.W. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

    Book  MATH  Google Scholar 

  11. Demmel J.W. and Veselić K. Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13 (1992) 1204–1246.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dongarra J.J. and Sorensen D.C. A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Statist. Comput. 8 (1987) 139–154.

    Article  MathSciNet  Google Scholar 

  13. Francis J.G.F. The QR transformation: a unitary analogue to the LR transformation. Parts I and II Comput. J. 4 1961 265–272,265–272.

    Google Scholar 

  14. Givens W. Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Lab.,ORNL-1574,1954.

    MATH  Google Scholar 

  15. Golub G.H. Some uses of the Lanczos algorithm in numerical linear algebra. In: Miller J.J.H. (Ed.), Topics in Numerical Analysis, A cademic Press, New York,1973, pp. 173–184.

    Google Scholar 

  16. Golub G.H. and Van Loan C.F. Matrix Computations. The Johns Hopkins University Press,Balt imore, 1996.

    Google Scholar 

  17. Golub G.H. and van der Vorst H.A. Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123 (2000) 35–65.

    Article  MathSciNet  MATH  Google Scholar 

  18. Greenstadt J. A method for finding roots of arbitrary matrices. Math. Tables Aids Comput. 9 (1955) 47–52.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gregory R.T. Computing eigenvalues and eigenvectors of a symmetric matrix on the ILLIAC. Math. Tables Aids Comput. 7 (1953) 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gu M. and Eisenstat S.C. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16 (1995) 172–191.

    Article  MathSciNet  MATH  Google Scholar 

  21. Henrici P. On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing the eigenvalues of Hermitian matrices. SIAM J. Appl. Math. 6 (1958) 144–162.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hessenberg K. Aufl¨osung linearer Eigenwertaufgaben met Hilfe der Hamilton- Cayleyschen Gleichung. Ph.D. Thesis,Technische Hochschule, Darmstadt, 1940.

    Google Scholar 

  23. Hoffmann W. and Parlett B.N. A newpr oof of global convergence for the tridiagonal QL algorithm. SIAM J. Numer. Anal. 15 (1978) 929–937.

    Article  MathSciNet  MATH  Google Scholar 

  24. Householder A.S. The Theory of Matrices in Numerical Analysis. Dover, New York,1964.

    Google Scholar 

  25. Jacobi C.G.J. Über ein leichtes Verfahren, die in der Theorie der Säcularstőrungen vorkommenden Gleichungen numerisch aufzulősen. J. Reine Angew. Math. 30 (1846) 51–94.

    Article  MATH  Google Scholar 

  26. Krylov A.N. O cislennom resenii uravnenija, kotorym v techniceskih voprasah opredeljajutsja castoty malyh kolebanii material’nyh sistem. Izv. Akad. Nauk SSSR. Ser. Fiz.-Mat. 4 (1931) 491–539.

    Google Scholar 

  27. Kublanovskaja V.N. On some algorithms for the solution of the complete eigenvalue problem. Zh. Vych. Mat. 1 (1961) 555–570.

    MathSciNet  Google Scholar 

  28. Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand 45 (1950) 225–280.

    Article  MathSciNet  Google Scholar 

  29. Li T.-Y. and Zeng Z. Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems. Math. Comput. 59 (1992) 483–502.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu S.H. and Golub G.H. Homotopy method for the numerical solution of the eigenvalue problem of self-adjoint partial differential operators. Numer. Algorithms 10 (1995) 363–378.

    Article  MathSciNet  Google Scholar 

  31. Morgan R.B. and Scott D.S. Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Statist. Comput. 7 (3) (1986) 817–825.

    Article  MathSciNet  MATH  Google Scholar 

  32. Olsen J.,J orgensen P. and Simons J. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 169 (1990) 463–472.

    Article  Google Scholar 

  33. [33] Ostrowski A.M. On the convergence of the Rayleigh quotient iteration for the computation of characteristic roots and vectors I-VI. Arch. Rational. Mesh. Anal. I 1:233–241,I I 2:233–241,I II 3:233–241,I V 3:233–241,V 3:233–241,V I 4:233–241,233–241.

    Google Scholar 

  34. Paige C.C. The computation of eigenvalues and eigenvectors of very large matrices. Ph.D. Thesis,University of London, 1971.

    Google Scholar 

  35. Parlett B.N. The Symmetric Eigenvalue Problem. Prentice-Hall, En glewood Cliffs,N J, 1980.

    MATH  Google Scholar 

  36. Pope D.A. and Tompkins C. Maximizing functions of rotations: experiments concerning speed of diagonalization of symmetric matrices using Jacobi’s method. J. ACM 4 (1957) 459–466.

    Article  MathSciNet  Google Scholar 

  37. Ruhe A. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices. Math. Comput. 33 (1979) 680–687.

    Article  MathSciNet  MATH  Google Scholar 

  38. Saad Y. Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl. 34 (1980) 269–295.

    Article  MathSciNet  MATH  Google Scholar 

  39. Schönhage A. Zur Konvergenz des Jacobi-Verfahrens. Numer. Math. 3 (1961) 374–380.

    Article  MathSciNet  MATH  Google Scholar 

  40. Sleijpen G.L.G. and van der Vorst H.A. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17 (1996) 401–425.

    Article  MathSciNet  MATH  Google Scholar 

  41. Stewart G.W. and Sun Ji-Guang Matrix Perturbation Theory. Academic Press, San Diego,CA, 1990.

    MATH  Google Scholar 

  42. Tisseur F. and Dongarra J. A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed memory architectures. SIAM J. Sci. Comput. 20 (1999) 2223–2236.

    Article  MathSciNet  MATH  Google Scholar 

  43. Trefethen L.N. and Bau D. III, Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

    Book  MATH  Google Scholar 

  44. Underwood R.R. An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems. Technical Report STAN-CS-75–495,Department of Computer Science, Stanford University, Stanford, CA,1975.

    Google Scholar 

  45. van Kempen H.P.M. On quadratic convergence of the special cyclic Jacobi method. Numer. Math. 9 (1966) 19–22.

    Article  MathSciNet  MATH  Google Scholar 

  46. von Mises R. and Pollaczek-Geiringer H. Praktische Verfahren der Gleichungsaufl ősung. Z. Angew. Math. Mech. 9 (1929) 58–77,58–77

    Google Scholar 

  47. Watkins D.S. Some perspectives on the eigenvalue problem. SIAM Rev. 35 (1993) 430–471.

    Article  MathSciNet  MATH  Google Scholar 

  48. Watkins D.S. and Elsner L. Chasing algorithms for the eigenvalue problem. SIAM J. Matrix Anal. Appl. 12 (1991) 374–384.

    Article  MathSciNet  MATH  Google Scholar 

  49. Wilkinson J.H. The Algebraic Eigenvalue Problem. Clarendon Press,Ox ford, 1965.

    Google Scholar 

  50. Wilkinson J.H. and Reinsch C. (Eds.) Handbook for Automatic Computation. Vol. 2, Linear Algebra,S pringer,H eidelberg, 1971.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, W., Prabhu, N. (2003). Jacobi Decomposition and Eigenvalues of Symmetric Matrices. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics