Skip to main content

Detecting Undersampling in Surface Reconstruction

  • Chapter

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

Abstract

Current surface reconstruction algorithms perform satisfactorily on well sampled, smooth surfaces without boundaries. However, these algorithms face difficulties with undersampling. Cases of undersampling are prevalent in real data since often these data sample a part of the boundary of an object, or are derived from a surface with high curvature or non-smoothness. In this paper we present an algorithm to detect the boundaries where dense sampling stops and undersampling begins. This information can be used to reconstruct surfaces with boundaries, and also to localize small and sharp features where usually undersampling happens. We report the effectiveness of the algorithm with a number of experimental results. Theoretically, we justify the algorithm with some mild assumptions that are valid for most practical data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Adamy, J. Giesen, M. John. Surface reconstruction using umbrella filters. Proc. IEEE Visualization, (2000), 373–380.

    Google Scholar 

  2. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom., 22 (1999), 481–504.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Amenta, M. Bern and M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm. SIGGRAPH 98, (1998), 415-421.

    Google Scholar 

  4. N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple algorithm for homeomorphic surface reconstruction. Internat. J. Comput. Geom. & Appl., 12 (2002), 125–141.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Amenta, S. Choi and R. K. Kolluri. The power crust, unions of balls, and the medial axis transform. Internat. J. Comput. Geom. & Appl., 19 (2000), 127–153.

    Article  MathSciNet  Google Scholar 

  6. D. Attali. r-regular shape reconstruction from unorganized points. Proc. 13th Ann. Sympos. Comput. Geom., (1997), 248–253.

    Google Scholar 

  7. C. Bajaj, F. Bernardini and G. Xu. Automatic reconstruction of surfaces and scalar fields from 3D scans. SIGGRAPH 95, (1995), 109–118.

    Google Scholar 

  8. J. D. Boissonnat. Geometric structures for three dimensional shape representation. ACM Transact. on Graphics, 3 (1984) 266–286.

    Article  Google Scholar 

  9. J. D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbor interpolation of distance functions. Proc. 16th. Ann. Sympos. Comput. Geom., (2000), 223–232.

    Google Scholar 

  10. B. Curless and M. Levoy. A volumetric method for building complex models from range images. SIGGRAPH 96, (1996), 303-312.

    Google Scholar 

  11. T. K. Dey, K. Mehlhorn and E. A. Ramos. Curve reconstruction: connecting dots with good reason. Comput. Geom. Theory Appl., 15 (2000), 229–244.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. K. Dey, J. Giesen, N. Leekha and R. Wenger. Detecting boundaries for surface reconstruction using co-cones. Internat. J. Comput. Graphics & CAD/CAM, 16 (2001), 141–159.

    Google Scholar 

  13. H. Edelsbrunner. Shape reconstruction with Delaunay complex. LNCS 1380LATIN’98: Theoretical Informatics, (1998), 119–132.

    Google Scholar 

  14. H. Edelsbrunner and E. P. M¨ucke. Three-dimensional alpha shapes. ACM Trans. Graphics, 13 (1994), 43–72.

    Article  MATH  Google Scholar 

  15. H. Edelsbrunner and N. Shah. Triangulating topological spaces. Internat. J. Comput. Geom. & Appl., 7 (1997), 365–378.

    Article  MathSciNet  Google Scholar 

  16. T. Gutzmer and A. Iske. Detection of discontinuities in scattered data approximation. Numerical Algorithms, 16 (1997), 155–170.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Hiyoshi and K. Sugihara. Voronoi-based interpolation with higher continuity. Proc. 16th. Ann. Sympos. Comput. Geom., (2000), 242–250.

    Google Scholar 

  18. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle. Surface reconstruction from unorganized points. SIGGRAPH 92, (1992), 71-78.

    Article  Google Scholar 

  19. D. Zorin and P. Schr¨oder. Subdivision for modeling and animation. SIGGRAPH 99 Course Notes.

    Google Scholar 

  20. http://http://www.cis.ohio-state.edu/-tamaldey/cocone.html-state.edu/-tamaldey/cocone.html

  21. http://http://www.cgal.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, T.K., Giesen, J. (2003). Detecting Undersampling in Surface Reconstruction. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics