Skip to main content

A Lower Bound on the Complexity of Approximate Nearest-Neighbor Searching on the Hamming Cube

  • Chapter

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

Abstract

We consider the nearest-neighbor problem over the d-cube: given a collection of points in {0, 1}d, find the one nearest to a query point (in the L1 sense). We establish a lower bound of Ω(log log d/ log log log d) on the worst-case query time. This result holds in the cell probe model with (any amount of) polynomial storage and word-size d O(1). The same lower bound holds for the approximate version of the problem, where the answer may be any point further than the nearest neighbor by a factor as large as \( 2^{\left\lfloor {(\log d)^{1 - \varepsilon } } \right\rfloor } \) , for any fixed ε > 0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combinatorica, 8:235–247, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Arya and D. M. Mount. Approximate nearest neighbor searching. In Proc. 4th Annu. ACM-SIAM Symp. Disc. Alg., pages 271–280, 1993.

    Google Scholar 

  3. S. Arya, D. M. Mount, and O. Narayan. Accounting for boundary effects in nearest-neighbor searching. Disc. Comput. Geom., 16(2):155–176, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A.Wu. An optimal algorithm for approximate nearest neighbor searching. J. ACM, 45(6):891–923, 1998. Preliminary version in Proc. 5th Annu. ACM-SIAM Symp. Disc. Alg., pages 573–582, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Barkol and Y. Rabani. Tighter lower bounds for nearest neighbor search and related problems in the cell probe model. In Proc. 32nd Annu. ACM Symp. Theory Comput., pages 388–396, 2000.

    Google Scholar 

  6. P. Beame and F. Fich. Optimal bounds for the predecessor problem. In Proc. 31st Annu. ACM Symp. Theory Comput., pages 295–304, 1999.

    Google Scholar 

  7. M. Bern. Approximate closest-point queries in high dimensions. Inform. Process. Lett., 45(2):95–99, 1993.

    MathSciNet  MATH  Google Scholar 

  8. A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional nearest neighbor search and related problems. In Proc. 31st Annu. ACM Symp. Theory Comput., pages 312–321, 1999.

    Google Scholar 

  9. F. Cazals. Effective nearest neighbors searching on the hyper-cube, with applications to molecular clustering. In Proc. 14th Annu. ACM Symp. Comput. Geom., pages 222–230, 1998.

    Google Scholar 

  10. T. Chan. Approximate nearest neighbor queries revisited. Disc. Comput. Geom., 20(3):359–373, 1998. Preliminary version in Proc. 13th Annu. ACM Symp. Comput. Geom., pages 352–358, 1997.

    Article  MATH  Google Scholar 

  11. B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge, 2000. Approximate Nearest Neighbor Lower Bound 327

    MATH  Google Scholar 

  12. K. L. Clarkson. A probabilistic algorithm for the post office problem. In Proc. 17th Annu. ACM Symp. Theory Comput., pages 175–184, 1985.

    Google Scholar 

  13. K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput., 17(4):830–847, 1988.

    MathSciNet  MATH  Google Scholar 

  14. K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. 10th Annu. ACM Symp. Comput. Geom., pages 160–164, 1994.

    Google Scholar 

  15. S. Har-Peled. A replacement for voronoi diagrams of near linear size. In Proc. 42nd Annu. IEEE Symp. Found. Comput. Sci., pages 94–103, 2001.

    Google Scholar 

  16. W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc., 58(301):13–30, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proc. 30th ACM Symp. Theory Comput., pages 604–613, 1998.

    Google Scholar 

  18. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Disc. Math., 3(2):255–265, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. M. Kleinberg. Two algorithms for nearest neighbor search in high dimensions. In Proc. 29th Annu. ACM Symp. Theory Comput., pages 599–608, 1997.

    Google Scholar 

  20. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  21. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high-dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000. Preliminary version in Proc. 30th Annu. ACM Symp. Theory Comput., pages 614–623, 1998.

    MathSciNet  MATH  Google Scholar 

  22. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995. Preliminary version in Proc. 35th Annu. IEEE Symp. Found. Comput. Sci., pages 577–591, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. B. Miltersen. Lower bounds for union-split-find related problems on random access machines. In Proc. 26th Annu. ACM Symp. Theory Comput., pages 625–634, 1994.

    Google Scholar 

  24. P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998. Preliminary version in Proc. 27th Annu. ACM Symp. Theory Comput., pages 103–111, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Xiao. New Bounds in Cell Probe Model. PhD thesis, UC San Diego, 1992.

    Google Scholar 

  26. A. C. Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981.

    Article  MATH  Google Scholar 

  27. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In Proc. 4th Annu. ACM-SIAM Symp. Disc. Alg., pages 311–321, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakrabarti, A., Chazelle, B., Gum, B., Lvov, A. (2003). A Lower Bound on the Complexity of Approximate Nearest-Neighbor Searching on the Hamming Cube. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics