Skip to main content

Functional Role of Gangliosides in Neuronal Motility

  • Chapter
Guidance Cues in the Developing Brain

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 32))

Abstract

Cell migration occurs often during mammalian brain development and persists in a few regions in the adult brain. Defective migratory behavior of neurons is thought to be the underlying cause of several congenital cortical disorders.Thus, an understanding of the dynamics and molecular mechanisms of neuronal cell migration could expand our knowledge of normal development of the central nervous system (CNS) as well as help in deciphering the pathogenesis of various developmental dis orders (Aicardi 1994; Raymond et al. 1994; Uher and Golden 2000; Walsh and Goffinet 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aicardi J (1994) The place of neuronal migration abnormalities in child neurology. Can J Neurol Sci 21: 185–193

    PubMed  CAS  Google Scholar 

  • Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C (2000) Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 127: 1359–1372

    PubMed  CAS  Google Scholar 

  • Altman J (1969a) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137: 433–458

    PubMed  CAS  Google Scholar 

  • Altman J (1969b) Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136: 269–294

    PubMed  CAS  Google Scholar 

  • Anderson AS, Eisenstat DD, Shi L, Rubenstein JLR (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278: 474–476

    PubMed  CAS  Google Scholar 

  • Araujo H, Menezes MA, Mendez-Otero R (1997) Blockage of 9–0-acetyl gangliosides induces depolymerization in growth cones and neurites. Eur J Cell Biol 72: 202–213

    PubMed  CAS  Google Scholar 

  • Bahr M, Schlosshauer B (1989) JONES ganglioside expression on retinal glia increases after axotomy. J Neurocytol 18: 553–563

    PubMed  CAS  Google Scholar 

  • Birkle S, Ren S, Slominski A, Zeng G, Gao L, Yu RK (1999) Down-regulation of the expression of O-acetyl-GD3 by the 0-acetylesterase cDNA in hamster melanoma cells: effects on cellular proliferation, differentiation, and melanogenesis. J Neurochem 72: 954–961

    PubMed  CAS  Google Scholar 

  • Birkle S, Gao L, Zeng G, Yu RK (2000) Down regulation of GD3 ganglioside and its 0-acetylated derivative by stable transfection with antisense vector against GD3synthase gene expression in hamster melanoma cells: effects on cellular growth, melanogenesis, and dendricity. J Neurochem 74: 547–554

    PubMed  CAS  Google Scholar 

  • Bixby JL, Harris WA (1991) Molecular mechanisms of axon growth and guidance. Annu Rev Cell Biol 7:117–159

    PubMed  CAS  Google Scholar 

  • Blackburn CC, Swank-Hill P, Schnaar RL (1986) Gangliosides support neural retina cell adhesion. J Biol Chem 261:2873–2881

    PubMed  CAS  Google Scholar 

  • Blum AS, Barnstable CJ (1987) 0-acetylation of a cell-surface carbohydrate creates discrete molecular patterns during neuronal development. Proc Natl Acad Sci USA 84:8716–8720

    PubMed  CAS  Google Scholar 

  • Bonafede DM, Macala LJ, Constantine-Paton M, Yu RK (1989) Isolation and characterization of ganglioside 9-O-acetyl-GD3 from bovine buttermilk. Lipids 24:680–684

    PubMed  CAS  Google Scholar 

  • Bourrat F, Sotelo C (1988) Migratory pathways and neuritic differentiation of the inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Brain Res 467:19–37

    PubMed  CAS  Google Scholar 

  • Brigande JV, Platt FM, Seyfried TN (1998) Inhibition of glycosphingolipid biosynthesis does not impair growth or morphogenesis of the postimplantation mouse embryo. J Neurochem 70:871–882

    PubMed  CAS  Google Scholar 

  • Cameron RS, Rakic P (1994) Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells. J Neurosci 14:3139–3155

    PubMed  CAS  Google Scholar 

  • Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446–1457

    PubMed  CAS  Google Scholar 

  • Cheresh DA, Klier FG (1986) Disialoganglioside GD2 distributes preferentially into substrate associated microprocesses on human melanoma cells during their attachment to fibronectin. J Cell Biol 102:1887–1897

    PubMed  CAS  Google Scholar 

  • Cheresh DA, Varki AP, Varki NM, Stallcup WB, Levine J, Reisfeld RA (1984) A monoclonal antibody recognizes an 0-acetylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259:7453–7459

    PubMed  CAS  Google Scholar 

  • Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102:688–696

    PubMed  CAS  Google Scholar 

  • Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Blum AS, Mendez-Otero R, Barnstable C (1986) A cell surface molecule distributed in a dorso-ventral gradient in the perinatal rat retina. Nature 324:459–462

    PubMed  CAS  Google Scholar 

  • Corbin JG, Nery, S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nature Neurosci 4:1177–1182

    PubMed  CAS  Google Scholar 

  • de Carlos JA, Lopez-Mascarade L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    PubMed  Google Scholar 

  • de Diego I, Kyriakopoulou K, Karagogeos D, Wassef M (2002) Multiple influences on the migration of precerebellar neurons in the caudal medulla. Development 129:297–306

    PubMed  Google Scholar 

  • Denaxa M, Chan C-H, Schachner M, Parnavelas JG, Karagogeos, D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635–4644

    PubMed  CAS  Google Scholar 

  • Dodd J, Jessell TM (1988) Axon guidance and the patterning of neuronal projections in vertebrates. Science 242:692–699

    PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Edmondson J, Liem R, Kuster J, Hatten ME (1988) Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar micro-cultures. J Cell Biol 106:505–517

    PubMed  CAS  Google Scholar 

  • Fenderson BA, Ostrander GK, Hausken Z, Radin NS, Hakomori S (1992) A ceramide analogue (PDMP) inhibits glycolipid synthesis in fish embryos. Exp Cell Res 198:362–366

    PubMed  CAS  Google Scholar 

  • Ferreira A, Busciglio J, Landa C, Caceres A (1990) Ganglioside-enhanced neurite growth: evidence for a selective induction of high molecular weight MAP-2. J Neurosci 10:293–302

    PubMed  CAS  Google Scholar 

  • Finnegan SG, Lemmon VP, Koenig E (1992) Characterization of the retraction response of goldfish retinal ganglion cell axons induced by monoclonal antibody 8A2 in vitro. Cell Mot Cytoskeleton 23:279–301

    CAS  Google Scholar 

  • Fishell G, Hatten ME (1991) Astrotactin provides a neuronal receptor system for CNS migration. Development 113:755–765

    PubMed  CAS  Google Scholar 

  • Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266

    PubMed  CAS  Google Scholar 

  • Gallo G, Letourneau PC (1999) Axon guidance: a balance of signals sets axons on the right track. Curr Biol 9:R490–R492

    PubMed  CAS  Google Scholar 

  • Garcia-Abreu J, Mendes FA, Onofre GR, Freitas MS, Silva LCF, Moura Neto V, Cavalcante LA (2000) Contribution of heparan sulfate to the non-permissive role of the midline glia to the growth of midbrain neurites. Glia 29: 260–272

    PubMed  CAS  Google Scholar 

  • Geisler FH, Coleman WP, Grieco G, Poonian D (2001) The syngen (r) multicenter acute spinal cord injury study. Spine 15: 87–98

    Google Scholar 

  • Gilmore E, Herrup K (1997) Cortical development: layers of complexity. Curr Biol 7: R231–R234

    PubMed  CAS  Google Scholar 

  • Gleeson J, Walsh C (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359

    PubMed  CAS  Google Scholar 

  • Hakomori SI (2002) The glycosynapse. Proc Natl Acad Sci USA 8:225–232

    Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipidcholesterol microdomains. Curr Opin Cell Biol 9:534–542

    PubMed  CAS  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    PubMed  CAS  Google Scholar 

  • Hedin-Pereira C, deMoraes ECP, Lent R, Mendez-Otero R (1997) Immunoblocking 90-acetylated gangliosides arrests cell migration in the developing cerebral cortex. Soc Neurosci Abstr 23:871

    Google Scholar 

  • Horwitz AR, Parsons JT (1999) Cell migration - movin’ on. Science 286:1102–1103

    PubMed  CAS  Google Scholar 

  • Hu H, Tomasiewics H, Magnuson T, Rutishauser U (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone.Neuron 16:735–743

    PubMed  CAS  Google Scholar 

  • Hynes RO, Lander AD (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68:303–322

    PubMed  CAS  Google Scholar 

  • Hynes RO, Patel R, Miller RH (1986) Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development. J Neurosci 6:867–876

    PubMed  CAS  Google Scholar 

  • Iwabuchi K, Handa K, Hakomori S (1998) Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B 16 cells and its role in cell adhesion coupled with signaling. J Biol Chem 273:33766–33773

    PubMed  CAS  Google Scholar 

  • Kalka D, von Reitzenstein C, Kopitz J, Cantz M (2001) The plasma membrane ganglio-side sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun 18:989–993

    Google Scholar 

  • Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y (2000) Involvement of gangliosides in glycosyl-phosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275:34701–34709

    PubMed  CAS  Google Scholar 

  • Katagiri YU, Mori T, Hakajima H, Katagiri C, Taguchi T, Takeda T, Kiyokawa N, Fujimoto J (1999) Activation of Src family kinase yes induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J Biol Chem 273:35278–3582

    Google Scholar 

  • Katz B-Z, Zamir E, Bershadsky A, Yamada KM, Geiger B (2000) Physical state of the extracellular matrix regulates the structure and composition of cell-matrix adhesions. Mol Biol Cell 11:1047–1060

    PubMed  CAS  Google Scholar 

  • Kawai H, Sango K, Mullin KA, Proia RL (1998) Embryonic stem cells with a disrupted GD3 synthase gene undergo neuronal differentiation in the absence of b-series gangliosides. J Biol Chem 273:19634–19638

    PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential migration in the cerebellar external granular layer. J Neurosci 15:527–540

    Google Scholar 

  • Kopitz J, Reitzenstein C, Burchert M, Cantz M, Gabius HJ (1998) galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273:11205–11211

    PubMed  CAS  Google Scholar 

  • Kyriakopolou K, de Diego I, Wassef M, Karagogeos D (2002) A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla. Development 129:287–296

    Google Scholar 

  • Lambert de Rouvroit C, Goffinet AM (2001) Neuronal migration. Mech Dev 105:47–56 Levine JM, Beasly L, Stallcup WB (1984) The D1.1 antigen: a cell surface marker for germinal cells of the central nervous system. J Neurosci 4:820–831

    Google Scholar 

  • Li E, Ladish S (1997) Inhibition of endogenous ganglioside synthesis does not block neurite formation by retinoic acid-treated neuroblastoma cells. J Biol Chem 272:1349–1354

    PubMed  CAS  Google Scholar 

  • Li R, Kong Y, Ladish S (1998) Nerve growth factor-induced neurite formation in PC12 cells dependent of endogenous cellular gangliosides. Glycobiology 8:597–603

    PubMed  CAS  Google Scholar 

  • Mello LEAM, Mendez-Otero R (1996) Expression of 9-O-acetylated gangliosides in the rat hippocampus. Neurosci Lett 213:17–20

    PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Cavalcante LA (1996) Expression of 9-O-acetylated gangliosides is correlated with tangential cell migration. Neurosci Lett 204:97–100

    PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Constantine-Paton M (1990) Granule cell induction of 9-O-acetyl gangliosides on cerebellar glia in microcultures. Dev Biol 138:400–409

    PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Friedman JE (1996) Role of acetylated gangliosides on neurite exten-sion. Eur J Cell Biol 71:192–198

    Google Scholar 

  • Mendez-Otero R, Ramon-Cueto A (1994) Expression of 9-O-acetylated gangliosides during development of the rat olfactory system. NeuroReport 5:1755–1759

    PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Santiago MF (2001) Functional role of a glycolipid in directional movements of neurons. An Acad Bras Cienc 73:221–229

    PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Schlosshauer B, Barnstable CJ, Constantine-Paton M (1988) A devel-opmentally regulated antigen associated with neural cell and process migration. J Neurosci 8:564–579

    PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Schlosshauer B, Constantine-Paton M (1992) Role of acetylated gangliosides on neuronal migration and axonal outgrowth. In: Lent R (ed) The visual system from genesis to maturity. Birkhauser, Boston, pp 49–62

    Google Scholar 

  • Messier PE (1978) Microtubules, interkinetic nuclear migration and neurulation. Experientia 34:289–296

    PubMed  CAS  Google Scholar 

  • Misson JP, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Dev Brain Res 38:183–190

    Google Scholar 

  • Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, Sawada M (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274:5004–5011

    PubMed  CAS  Google Scholar 

  • Miyakoshi LM, Mendez-Otero R, Hedin-Pereira C (2001a) The 9-O-acetyl GD3 gan-glioside is expressed by migrating chains of subventricular zone neurons in vitro. Braz J Med Biol Res 34:669–673

    CAS  Google Scholar 

  • Miyakoshi LM, Mendez-Otero R, Hedin-Pereira C (2001b) Role of 9-O-acetyl GD3 in the migration of subventricular zone neuronal precursors. J Neurochem 78 [Suppl]:56

    Google Scholar 

  • Morris NR, Efimov VP, Xiang X (1998) Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol 8:467–470

    PubMed  CAS  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–358

    PubMed  CAS  Google Scholar 

  • Multani P, Bonafede DM, Yu RK, Constantine-Paton M (1988) Biochemical character-ization of Jones immunoreactive gangliosides in rat. Soc Neurosci Abstr 14:1016

    Google Scholar 

  • Nadarajah B, Brunstrom JE, Grutzendler J, Wong ROL, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nature Neurosci 4:143–150

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Alifragis P, Wong ROL, Parnavelas JG (2002) Ventricle-directed migration in the developing cerebral cortex. Nature Neurosci 5:218–224

    PubMed  CAS  Google Scholar 

  • Noctor SC, Fint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    PubMed  CAS  Google Scholar 

  • Norgren RB Jr, Lehman MN (1991) Neurons that migrate from the olfactory epithelium in the chick express luteinizing hormone-releasing hormone. Endocrinology 128:1676–1678

    PubMed  CAS  Google Scholar 

  • Ono K, Kawamura K (1989) Migration of immature neurons along tangentially oriented fibers in the subpial part of the fetal mouse medulla oblongata. Exp Brain Res 78:190–201

    Google Scholar 

  • Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S (2001) GM3 ganglio-side inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochem-istry 40:6414–6421

    CAS  Google Scholar 

  • Pande G (2000) The role of membrane lipids in regulation of integrin function. Curr Opin Cell Biol 12:569–574

    PubMed  CAS  Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurons: new vistas. Trends Neurosci 23:126–131

    PubMed  CAS  Google Scholar 

  • Parnavelas JG, Nadarajah B (2001) Radial glial cells: are they really glia? Neuron 31:881–884

    PubMed  CAS  Google Scholar 

  • Pearlman AL, Faust PL, Hatten ME, Brunstrom JE (1998) New directions for neuronal migration. Curr Opin Neurobiol 8:45–54

    PubMed  CAS  Google Scholar 

  • Prinetti A, Marano N, Prioni S, Chigorno V, Mauri L, Casellato R, Tettamanti G, Sonnino S (2000) Association of Src-family protein tyrosine kinase with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconj J 17:223–232

    PubMed  CAS  Google Scholar 

  • Probstmeier R, Pesheva P (1999) Tenascin-C inhibits bl integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 9:101–114

    PubMed  CAS  Google Scholar 

  • Purpura DP (1978) Ectopic dendritic growth in mature pyramidal neurons in human ganglioside storage disease. Nature 276:520–521

    PubMed  CAS  Google Scholar 

  • Rakic P (1985) Mechanisms of neuronal migration in developing cerebellar cortex. In: Edelman GE, Cowan WM, Gall E (eds) Molecular basis of neural development. Wiley, New York, pp 139–160

    Google Scholar 

  • Rakic P (1995) Radial glial cells: scaffolding for brain construction. In: Ketterman H, Ransom BR (eds) Neuroglia. Oxford Univ Press, New York, pp 746–762

    Google Scholar 

  • Rakic P, Cameron RS, Komuro H (1994) Recognition, adhesion, transmembrane sig-naling and cell motility in guided neuronal migration. Curr Opin Neurobiol 4:63–69

    CAS  Google Scholar 

  • Raymond AA, Fish DR, Stevens JM, Sisodiya SM, Alsanjari N, Shorvon SD (1994) Subependymal heterotopia: a distinct neuronal migration disorder associated with epilepsy. Neurol Neurosurg Psychiatry 57:1195–1202

    CAS  Google Scholar 

  • Reinhardt-Maelicke S, Cleeves V, Kindler-Rohrborn A, Rajewsky MF (1990) Differen-tial recognition of a set of O-acetylated gangliosides by monoclonal antibodies RBI3–2,Dl.l, and Jones during rat brain development. Dev Brain Res 51:279–282

    CAS  Google Scholar 

  • Reitzenstein C, Kopitz J, Schuhmann V, Cantz M (2001) Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neurob-lastoma cell lines. Eur J Biochem 268:326–333

    Google Scholar 

  • Renaudin A, Lehmann M, Girault J-A, McKerracher L (1999) Organization of point contacts in neuronal growth cones. J Neurosci Res 55:458–471

    PubMed  CAS  Google Scholar 

  • Rieber P, Rank G (1994) CDw60: a marker for human CD8+ T helper cells. J Exp Med 179:1385–1390

    PubMed  CAS  Google Scholar 

  • Ritter G, Boosfeld E, Markstein E, Yu RK, Ren SL, Stallcup WB, Oettgen HF, Old LJ, Livingston PO (1990) Biochemical and serological characteristics of natural 9-O- acetyl GD3 from human melanoma and bovine buttermilk and chemically O- acetylated GD3. Cancer Res 50:1410–1430

    Google Scholar 

  • Roisen F, Matta SG, Rapport MM (1986) The role of gangliosides in neurotrophic interaction in vitro. In: Tettamati G, Ledeen RW, Sadhoff K, Nagai Y, Toffano G (eds) Gangliosides and neuronal plasticity. Liviana Press, Padova, pp 281–293

    Google Scholar 

  • Rosner H (1994) Gangliosides and brain development. In: Nicolini M, Zatta PF (eds) Glycobiology and the brain. Pergamon Press, New York, pp 19–39

    Google Scholar 

  • Ryder EF, Cepko CL (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12:1011–1029

    Google Scholar 

  • Santiago MF, Berredo-Pinho M, Costa MR, Gandra M, Cavalcante LA, Mendez-Otero R (2001) Expression and function of ganglioside 9-O-acetyl GD3 in postmitotic granule cell development. Mol Cell Neurosci 17:488–499

    PubMed  CAS  Google Scholar 

  • Sauer FC (1936) The interkinectic nuclear migration of embryonic epithelial nuclei. J Morphol 60:1–11

    Google Scholar 

  • Sauer FC, Walker BE (1959) Radiographic study of interkinectic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560

    Google Scholar 

  • Schlosshauer B, Blum AS, Mendez-Otero R, Barnstable CJ, Constantine-Paton M (1988) Developmental regulation of ganglioside antigens recognized by the JONES anti-body. J Neurosci 8:580–592

    PubMed  CAS  Google Scholar 

  • Schwarz A, Rapaport E, Hirschberg K, Futerman AH (1995) A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching. J Biol Chem 270:10990–10998

    PubMed  CAS  Google Scholar 

  • Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    PubMed  CAS  Google Scholar 

  • Shipley MT, McLean JH, Ennis M (1995) Olfactory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, New York, pp 899–922

    Google Scholar 

  • Sidman R, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, pp 3–145

    Google Scholar 

  • Simons M, Friedrichson T, Schultz JB, Pitto M, Masseri M, Kurzchalia TV (1999) Exoge-nous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol Biol Cell 10:3187–3196

    PubMed  CAS  Google Scholar 

  • Skaper SD, Katoh-Semba R, Varon S (1985) GM1 ganglioside accelerates neurite out-growth from primary peripheral and central neurons under selected culture condi-tions. Brain Res 355:19–26

    PubMed  CAS  Google Scholar 

  • Svennerholm L (1980) Ganglioside designation. In: Svennerholm L, Mandel P, Dreyfus H, Urban PF (eds) Structure and function of gangliosides. Plenum Press, New York, pp 11–13

    Google Scholar 

  • Takamiya H, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K, Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gan-gliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667

    PubMed  CAS  Google Scholar 

  • Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrat-ing neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    PubMed  CAS  Google Scholar 

  • Toffano G, Savoini G, Moroni F, Lombardi G, Calza l, Agnati LF (1983) GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261:163–166

    PubMed  CAS  Google Scholar 

  • Uher BF, Golden JA (2000) Neuronal migration defects of the cerebral cortex: a desti-nation debacle. Clin Genet 58:16–24

    PubMed  CAS  Google Scholar 

  • Varki A, Hooshmand F, Diaz S, Varki NM, Hedrick SM (1991) Developmental abnor-malities in transgenic mice expressing a sialic acid-specific 9-O-acetylase. Cell 65:65–74

    PubMed  CAS  Google Scholar 

  • Vyas AA, Schnaar RL (2001) Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83:677–682

    PubMed  CAS  Google Scholar 

  • Walsh CA, Goffinet AM (2000) Potential mechanisms of mutations that affect neuronal migration in man and mouse. Curr Opin Genet Dev 10:270–274

    PubMed  CAS  Google Scholar 

  • Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Biol 13:425–456

    Google Scholar 

  • Wichterle H, Garcia-Verdugo J, Alvarez-Buylla A (1997) Direct evidence for homotypic,glia-independent neuronal migration. Neuron 18:779–791

    PubMed  CAS  Google Scholar 

  • Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    PubMed  CAS  Google Scholar 

  • Yang LJ-S, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93:814–818

    PubMed  CAS  Google Scholar 

  • Yates AJ, Rampersaud A (1998) Sphingolipids as receptor modulators: an overview. Ann NY Acad Sci 845:7–71

    Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoat-tractant netrin-1. Neuron 24:607–622

    PubMed  CAS  Google Scholar 

  • Yu RK (1994) Developmental regulation of ganglioside metabolism. Prog Brain Res 10:3–44

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendez-Otero, R., Cavalcante, L.A. (2003). Functional Role of Gangliosides in Neuronal Motility. In: Kostović, I. (eds) Guidance Cues in the Developing Brain. Progress in Molecular and Subcellular Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55557-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55557-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62426-1

  • Online ISBN: 978-3-642-55557-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics