Skip to main content

Complex Patterns and Simple Architects: Molecular Guidance Cues for Developing Axonal Pathways in the Telencephalon

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 32))

Abstract

The aim of this review is to discuss the current research on the spatio-temporal distribution and function of the four major classes of axonal guidance cues (netrins, semaphorins, slits, and ephrins) and their receptors in the developing mammalian telencephalon. In the first part, we briefly describe guidance molecules and their receptors. In the second part, we review their overlapping distribution in the specific architectonic zones of the cerebral wall during the embryonic and early postnatal period. In the third part, we describe complementary and/or overlapping functions of these molecules in the development of all major classes of telencephalic axon pathways: subcortical (thalamic and extrathalamic) afferent systems, corticofugal (projection) systems, and cortico-cortical (commissural and ipsilateral) fiber systems. To conclude, we discuss several general themes which emerge from the current research, and point out that most axonal guidance cues have other developmental roles as well, including possible involvement in synaptic plasticity in the adult brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RH, Betz H, Piischel AW (1996) A novel class of murine semaphorins with homology to thrombospondin is differentially expressed in early embryos. Mech Dev 57:33–45

    PubMed  CAS  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    PubMed  CAS  Google Scholar 

  • Auladell C, Perez-Sust P, Super H, Soriano E (2000) The early development of thalam-ocortical and corticothalamic projections in the mouse. Anat Embryol (Berl) 201:169–179

    CAS  Google Scholar 

  • Bagnard D, Lohrum M, Uziel D, Piischel AW, Bolz J (1998) Semaphorins act as attrac-tive and repulsive guidance signals during the development of cortical projections. Development 125:5043–5053

    PubMed  CAS  Google Scholar 

  • Bagnard D, Thomasset N, Lohrum M, Piischel AW, Bolz J (2000) Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones. J Neurosci 20:1030–1035

    PubMed  CAS  Google Scholar 

  • Bagnard D, Chounlamountri N, Piischel A, Bolz J (2001) Axonal surface molecules act in combination with semaphorin 3A during the establishment of corticothalamic projections. Cereb Cortex 11:278–285

    PubMed  CAS  Google Scholar 

  • Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JLR, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral posi-tion of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    PubMed  CAS  Google Scholar 

  • Battye R, Stevens A, Jacobs JR (1999) Axon repulsion from the midline of the Drosophila CNS requires slit function. Development 126:2475–2481

    PubMed  CAS  Google Scholar 

  • Behar 0, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528

    PubMed  CAS  Google Scholar 

  • Bertuzzi S, Hindges R, Mui SH, O’Leary DDM, Lemke G (1999) The homeodomain protein Vaxl is required for axon guidance and major tract formation in the devel-oping forebrain. Genes Dev 13:3092–3105

    PubMed  CAS  Google Scholar 

  • Bicknese AR, Sheppard AM, O’Leary DDM, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14: 3500–3510

    PubMed  CAS  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-l are involved in the migration and survival of inferior olivary neurons. J Neurosci 19:4407–4420

    PubMed  CAS  Google Scholar 

  • Bolz J, Castellani V (1997) How do wiring molecules specify cortical connections? Cell Tissue Res 290:307–317

    PubMed  CAS  Google Scholar 

  • Braisted JE, Tuttle R, O’Leary DDM (1999) Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev BioI 208:430–440

    CAS  Google Scholar 

  • Braisted JE, Catalano SM, Stimac R, Kennedy TE, Tessier-Lavigne M, Shatz CJ, O’Leary DDM (2000) Netrin-l promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J Neurosci 20:5792–5801

    PubMed  CAS  Google Scholar 

  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily con-served role in repulsive axon guidance. Cell 96:795–806

    PubMed  CAS  Google Scholar 

  • Castellani V, Yue Y, Gao PP, Zhou R, Bolz J (1998) Dual action of a ligand for Eph re-ceptor tyrosine kinases on specific populations ofaxons during the development of cortical circuits. J Neurosci 18:4663–4672

    PubMed  CAS  Google Scholar 

  • Castellani V, Chedotal A, Schachner M, Faivre-Sarrailh C, Rougon G (2000) Analysis of the Ll-deficient mouse phenotype reveals cross-talk between Sema3A and Ll signaling pathways in axonal guidance. Neuron 27:237–249

    PubMed  CAS  Google Scholar 

  • Catalano SM, Messersmith EK, Goodman CS, Shatz CJ, Chedotal A (1998) Many major CNS axon projections develop normally in the absence of Semaphorin III. Mol Cell Neurosci 11:173–182

    PubMed  CAS  Google Scholar 

  • Chedotal A, Ja DR, Ruiz M, He Z, Borrell V, De Castro F, Ezan F, Tessier-Lavigne M, Sotelo C, Soriano E (1998) Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development 125:4313–4323

    PubMed  CAS  Google Scholar 

  • Chen H, Chedotal A, He Z, Goodman CS, Tessier-Lavigne M(1997) Neuropilin-2, anovel member of the neuropilin family, is a high-affinity receptor for the semaphorins Serna E and Serna IV, but not Serna III. Neuron 19:547–559

    PubMed  CAS  Google Scholar 

  • Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ, Lowenstein DH, Skarnes WC, Chedotal A, Tessier-Lavigne M (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56

    PubMed  Google Scholar 

  • Chen JH, Wen L, Dupuis S, Wu JY, Rao Y (2001) The N-terminalleucine-rich regions in Slit are sufficient to repel olfactory bulb axons and subventricular zone neurons. J Neurosci 21:1548–1556

    PubMed  CAS  Google Scholar 

  • Chisholm A, Tessier-Lavigne M (1999) Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol 9:603–615

    PubMed  CAS  Google Scholar 

  • Cloutier JF, Giger RJ, Koentges G, Dulac C, Kolodkin AL, Ginty DD (2002) Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 33:877–892

    PubMed  CAS  Google Scholar 

  • Cohen NR, Taylor JST, Scott LB, Guillery RW, Soriano P, Furley AJW (1998) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr BioI 8:26–33

    CAS  Google Scholar 

  • Colamarino SA, Tessier-Lavigne M (1995) The role of the floor plate in axon guidance. Annu Rev Neurosci 18:497–529

    CAS  Google Scholar 

  • Culotti JG, Kolodkin AL (1996) Functions of netrins and semaphorins in axon guid-ance. Curr Opin Neurobio16:81–88

    Google Scholar 

  • Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of mouse Ll gene leads to malformations of the nervous system. Nat Genet 17:346–352

    PubMed  CAS  Google Scholar 

  • De Castro F, Hu L, Drabkin H, Sotelo C, Chedotal A (1999) Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J Neurosci 19:4428–4436

    PubMed  Google Scholar 

  • Demyanenko GP, Tsai AY, Maness PF (1999) Abnormalities in neuronal process exten-sion, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 19:4907–4920

    PubMed  CAS  Google Scholar 

  • Dodd J, Morton SB, Karagogeos D, Yamamoto M, Jessell TM (1988) Spatial regulation of axon glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1:105–116

    PubMed  CAS  Google Scholar 

  • Donoghue MJ, Rakic P (1999a) Molecular gradients and compartments in the embry-onic primate cerebral cortex. Cereb Cortex 9:586–600

    CAS  Google Scholar 

  • Donoghue MJ, Rakic P (1999b) Molecular evidence for the early specification of pre-sumptive functional domains in the embryonic primate cerebral cortex. J Neurosci 19:5967–5979

    CAS  Google Scholar 

  • Donovan SL, Mamounas LA, Andrews AM, Blue ME, McCasland JS (2002) GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci 2289:3543–3552

    Google Scholar 

  • Erskine L, Williams SE, Brose K, Kidd T, Rachel RA, Goodman CS, Tessier-Lavigne M, Mason CA (2000) Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits. J Neurosci 20:4975–4982

    PubMed  CAS  Google Scholar 

  • Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA (1997) Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene. Nature 386:796–804

    PubMed  CAS  Google Scholar 

  • Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisen J, Lu Q, Barbacid M, Flanagan JG (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21:1303–1313

    PubMed  CAS  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The Ephrins and Eph receptors in neural devel-opment. Annu Rev Neurosci 21:309–345

    PubMed  CAS  Google Scholar 

  • Fujimori KE, Takeuchi K, Yazaki T, Uyemura K, Nojyo Y, Tamamaki N (2000) Expres-sion of Ll and TAG-l in the corticospinal, callosal, and hippocampal commissural neurons in the developing rat telencephalon as revealed by retrograde and in situ hybridization double labeling. J Comp Neurol 417:275–288

    PubMed  CAS  Google Scholar 

  • Gao PP, Zhang JH, Yokoyama M, Racey B, Dreyfus CF, Black IB, Zhou R (1996) Regula-tion of topographic projection in the brain: EIf-l in the hippocamposeptal system. Proc Nat! Acad Sci USA 93:11161–11166

    CAS  Google Scholar 

  • Gao PP, Yue Y, Zhang JH, Cerretti DP, Levitt P, Zhou R (1998) Ephrin-dependent growth and pruning of hippocampal axons. Proc Nat! Acad Sci USA 95:5329–5334

    CAS  Google Scholar 

  • Giger RJ, Wolfer DP, De Wit GMJ, Verhaagen J (1996) Anatomy of rat semaphorin III! collapsin-l mRNA expression and relationship to developing nerve tracts during neuroembryogenesis. J Comp Neurol 375:378–392

    PubMed  CAS  Google Scholar 

  • Giger RJ, Urquhart ER, Gillespie SKH, Levengood DV, Ginty DD, Kolodkin AL (1998) Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 21:1079–1092

    PubMed  CAS  Google Scholar 

  • Giger RJ, Cloutier JF, Sahay A, Prinjha RK, Levengood DV, Moore SE, Pickering S, Simmons D, Rastan S, Walsh FS et al (2000) Neuropilin-2 is required in vivo for selec-tive axon guidance responses to secreted semaphorins. Neuron 25:29–41

    PubMed  CAS  Google Scholar 

  • Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377

    PubMed  CAS  Google Scholar 

  • Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P (1998) Vaxl is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125:2599–2610

    PubMed  CAS  Google Scholar 

  • He Z) Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90:739–751

    Google Scholar 

  • Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T, Klein R (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46

    PubMed  CAS  Google Scholar 

  • Holmes GP, Negus K, Burridge L, Raman S, Alger E, Yamada T, Little MH (1998) Dis-tinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech Dev 79:57–72

    PubMed  CAS  Google Scholar 

  • Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo M (2000) Calcium signalling in the guidance of nerve growth by netrin-l. Nature 403:93–98

    PubMed  CAS  Google Scholar 

  • Hopker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C (1999) Growth-cone attrac-tion to netrin-l is converted to repulsion by laminin-l. Nature 401:69–73

    PubMed  CAS  Google Scholar 

  • Hu H (1999) Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23 703–711

    PubMed  CAS  Google Scholar 

  • Hu H (2001) Cell-surface heparan sulfate is involved in the repulsive guidance activi-ties of Slit2 protein. Nat Neurosci 4:695–701

    PubMed  CAS  Google Scholar 

  • Hu H, Rutishauser U (1996) A septum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron 16:933–940

    PubMed  CAS  Google Scholar 

  • Itoh A, Miyabayashi T, Ohno M, Sakano S (1998) Cloning and expressions of three mam-malian homologues of Drosophila slit suggest possible roles for Slit in the forma-tion and maintenance of the nervous system. Mol Brain Res 62:175–186

    PubMed  CAS  Google Scholar 

  • Kamiguchi H, Hlavin ML, Yamasaki M, Lemmon V (1998) Adhesion molecules and inherited diseases of the human nervous system. Annu Rev Neurosci 21:97–125

    PubMed  CAS  Google Scholar 

  • Kawakami A, Kitsukawa T, Takagi S, Fujisawa H (1996) Developmentally regulated expression of a cell surface protein, neuropilin in mouse nervous system. J Neuro-bioI 29:1–17

    CAS  Google Scholar 

  • Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:175–185

    PubMed  CAS  Google Scholar 

  • Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    PubMed  CAS  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998a) Roundabout controls axon crossing of the CNS midline and defines a novel sub-family of evolutionarily conserved guidance receptors. Cell 92:205–215

    CAS  Google Scholar 

  • Kidd T, Russell C, Goodman CS, Tear G (1998b) Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20:25–33

    CAS  Google Scholar 

  • Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the robo recep-tor in Drosophila. Cell 96:785–794

    PubMed  CAS  Google Scholar 

  • Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H (1997) Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19:995–1005

    PubMed  CAS  Google Scholar 

  • Klein R (2001) Excitatory Eph receptors and adhesive ephrin ligands. Curr Opin Cell Bioi 13:196–203

    CAS  Google Scholar 

  • Knoll B, Drescher U (2002) Ephrin-As as receptors in topographic projections. Trends Neurosci 25:145–149

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Koppel AM, Luo Y, Raper JA (1997) A role for collapsin-l in olfactory and cranial sensory axon guidance. J Neurosci 17:8339–8352

    PubMed  CAS  Google Scholar 

  • Kolodkin AL, Levengood DV, Rowe EG, Tai UT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    PubMed  CAS  Google Scholar 

  • Kostović I, Judas M (1995) Prenatal development of the cerebral cortex. In: Chervenak FA, Kurjak A, Comstock CH (eds) Ultrasound and the fetal brain. Parthenon Pub-lishing Group, New York, pp 1–26

    Google Scholar 

  • Kostovic I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267:1–6

    PubMed  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neuron 297:441–470

    CAS  Google Scholar 

  • Kostovic I, Judas M, Petanjek Z, Simic G (1995) Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 19:85–102

    PubMed  CAS  Google Scholar 

  • Kostovic I, Judas M, Rados M, Hrabac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544

    PubMed  Google Scholar 

  • Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R (2001) Kinase-dependent and kinase-independent functions of EphA4 receptors in major axons tract formation in vivo. Neuron 29:73–84

    PubMed  CAS  Google Scholar 

  • Lauderdale JD, Pasquali SK, Fazel R, van Eeden FJ, Schauerte HE, Haffter P, Kuwada JY (1998) Regulation of netrin-1aexpressionbyhedgehogproteins.Mol Cell Neurosci 11:194–205

    PubMed  CAS  Google Scholar 

  • Leighton PA, Mitchell KJ, Goodrich LV, Lu X, Pinson K, Scherz P, Skarnes WC, Tessier-Lavigne M (2001) Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410:174–179

    PubMed  CAS  Google Scholar 

  • Letourneau PC, Condic ML, Snow DM (1994) Interactions of developing neurons with the extracellular matrix. J Neurosci 14:915–928

    PubMed  CAS  Google Scholar 

  • Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C et al (1999) Vertebrate slit, a secreted ligand for the transmembrane protein round-about, is a repellent for olfactory bulb axons. Cell 96:807–818

    PubMed  CAS  Google Scholar 

  • Liu BP, Strittmatter SM (2001) Semaphorin-mediated axonal guidance via Rho-related G proteins. Curr Opin Cell Bioi 13:619–626

    CAS  Google Scholar 

  • Livesey FJ, Hunt SP (1997) Netrin and netrin receptor expression in the embryonic mammalian nervous system suggests roles in retina, striatal, nigral, and cerebellar development. Mol Cell Neurosci 8:417–429

    PubMed  CAS  Google Scholar 

  • Logan C, Wizenmann A, Drescher U, Monschau B, Bonhoeffer F, Lumsden A (1996) Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression. Curr Bioi 6: 1006–1014

    CAS  Google Scholar 

  • Mackarehtschian K, Lau CK, Caras I, McConnell SK (1999) Regional differences in the developing cerebral cortex revealed by Ephrin-A5 expression. Cereb Cortex 9:601–610

    PubMed  CAS  Google Scholar 

  • Mann F, Zhukareva V, Pimenta A, Levitt P, Bolz J (1998) Membrane-associated mole-cules guide limbic and nonlimbic thalamocortical projections. J Neurosci 18: 9409–9419

    PubMed  CAS  Google Scholar 

  • Marillat V, Cases O, Nguyen Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A (2002) Spatiotemporal expression patterns of Slit and Robo genes in the rat brain. J Comp Neuroi 442:130–155

    Google Scholar 

  • Mark MD, Lohrum M, Piischel AW (1997) Patterning neuronal connections by chemorepulsion: the semaphorins. Cell Tissue Res 290:299–306

    PubMed  CAS  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982

    PubMed  CAS  Google Scholar 

  • Mellitzer G, Xu Q, Wilkinson DG (2000) Control of cell behavior by signaling through Eph receptors and ephrins. Curr Opin Neurobioll0:400–408

    CAS  Google Scholar 

  • Metin C, Godement P (1996) The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J Neurosci 16:3219–3235

    PubMed  CAS  Google Scholar 

  • Metin C, Deleglise D, Serafini T, Kennedy TE, Tessier-Lavigne M (1997) A role for netrin-l in the guidance of cortical efferents. Development 124:5063–5074

    PubMed  CAS  Google Scholar 

  • Miller B, Sheppard AM, Bicknese AR, Pearlman AL (1995) Chondroitin sulfate proteo-glycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways. J Comp NeuroI 355:615–628

    CAS  Google Scholar 

  • Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM (1997) cAMP-dependent growth cone guidance by netrin-l. Neuron 19:1225–1235

    PubMed  CAS  Google Scholar 

  • Molnar Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18:389–397

    PubMed  CAS  Google Scholar 

  • Molnar Z, Adams R, Blakemore C (1998a) Mechanisms underlying the early establish-ment of thalamocortical connections in the rat. J Neurosci 18:5723–5745

    CAS  Google Scholar 

  • Molnar Z, Adams R, Goffinet AM, Blakemore C (1998b) The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J Neurosci 18:5746–5765

    CAS  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388

    PubMed  CAS  Google Scholar 

  • Nakamura F, Kalb RG, Strittmatter SM (2000) Molecular basis of semaphorin-mediated axon guidance. J NeurobioI44:219–229

    Google Scholar 

  • Nguyen Ba-Charvet KT, Brose K, Marillat V, Kidd T, Goodman CS, Tessier-Lavigne M, Sotelo C, Chedotal A (1999) Slit2-mediated chemorepulsion and collapse of devel-oping forebrain axons. Neuron 22:463–473

    PubMed  CAS  Google Scholar 

  • Nguyen-Ba-Charvet KT, Plump AS, Tessier-Lavigne M, Chedotal A (2002) Slitl and Slit2 proteins control the development of the lateral olfactory tract. J Neurosci 22(13):5473–5480

    PubMed  CAS  Google Scholar 

  • O’Leary DDM, Wilkinson DG (1999) Eph receptors and ephrins in neural development. Curr Opin Neurobiol 9:65–73

    PubMed  Google Scholar 

  • Orioli D, Henkemeyer M, Lemke G, Klein R, Pawson T (1996) Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J 15:6035–6049

    PubMed  CAS  Google Scholar 

  • Ozdinler PH, Erzurumlu RS (2002) Slit2, a branching-arborization factor for sensory axons in the mammalian CNS. J Neurosci 22:4540–4549

    PubMed  CAS  Google Scholar 

  • Pearlman AL, Sheppard AM (1996) Extracellular matrix in early cortical development. Prog Brain Res 108:119–134

    CAS  Google Scholar 

  • Pini A (1993) Chemorepulsion ofaxons in the developing mammalian central nervous system. Science 261:95–98

    PubMed  CAS  Google Scholar 

  • Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M (2002) Slitl and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232

    PubMed  CAS  Google Scholar 

  • Polleux F, Giger RJ, Ginty DD, Kolodkin AL, Ghosh A (1998) Patterning of cortical effer-ent projections by semaphorin-neuropilin interactions. Science 282:1904–1906

    PubMed  CAS  Google Scholar 

  • Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    PubMed  CAS  Google Scholar 

  • Rabacchi SA, Solowska JM, Kruk B, Luo Y, Raper JA, Baird DH (1999) Collapsin-l/ semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar mossy fiber neuronal growth cones. J Neurosci 19:4437–4448

    PubMed  CAS  Google Scholar 

  • Rakic P (1982) Early developmental events: cell lineages, acquisition of neuronal posi-tions, and areal and laminar development. Neurosci Res Prog Bull 20:439–451

    CAS  Google Scholar 

  • Raper JA (2000) Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobioll0:88–94

    CAS  Google Scholar 

  • Richards LJ, Koester SE, Tuttle R, O’Leary DDM (1997) Directed growth of early corti-cal axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17:2445–2458

    PubMed  CAS  Google Scholar 

  • Ringstedt T, Braisted JE, Brose K, Kidd T, Goodman C, Tessier-Lavigne M, O’Leary DDM (2000) Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. J Neurosci 20:4983–4991

    PubMed  CAS  Google Scholar 

  • Schwarting GA, Kostek C, Ahmad N, Dibble C, Pays L, Piischel AW (2000) Semaphorin 3A is required for guidance of olfactory axons in mice. J Neurosci 20:7691–7697

    PubMed  CAS  Google Scholar 

  • Semaphorin Nomenclature Committee (1999) Unified nomenclature for the sema-phorins/collapsins. Cell 97:551–552

    Google Scholar 

  • Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424

    PubMed  CAS  Google Scholar 

  • Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-l is required for commissural axon guidance in the devel-oping vertebrate nervous system. Cell 87:1001–1014

    PubMed  CAS  Google Scholar 

  • Sestan N, Rakic P, Donoghue MJ (2000) Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression. Curr BioI 11:39–43

    Google Scholar 

  • Shen Y, Mani S, Donovan SL, Schwob JE, Meiri KF (2002) Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system. J Neurosci 22:239–247

    PubMed  CAS  Google Scholar 

  • Sheppard AM, Hamilton SK, Pearlman AL (1991) Changes in the distribution of extra-cellular matrix components accompany early morphogenetic events of mammalian cortical development. J Neurosci 11:3928–3942

    PubMed  CAS  Google Scholar 

  • Shigetani Y, Funahashi JI, Nakamura H (1997) En-2 regulates the expression of the ligands for Eph type tyrosine kinases in chick embryonic tectum. Neurosci Res 27:211–217

    PubMed  CAS  Google Scholar 

  • Shirasaki R, Tamada A, Katsumata R, Murakami F (1995) Guidance of cerebellofugal axons in the rat embryo: directed growth toward the floor plate and subsequent elongation along the longitudinal axis. Neuron 14:961–972

    PubMed  CAS  Google Scholar 

  • Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the devel-opment of the corpus callosum. J Neurosci 21:2749–2758

    PubMed  CAS  Google Scholar 

  • Silver J, Ogawa MY (1983) Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges. Science 220:1067–1069

    PubMed  CAS  Google Scholar 

  • Silver J, Edwards MA, Levitt PJ (1993) Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J Comp Neurol 328:415–436

    PubMed  CAS  Google Scholar 

  • Skaliora I, Singer W, Betz H, Piischel AW (1998) Differential patterns of semaphorin expression in the developing rat brain. Eur J Neurosci 10:1215–1229

    PubMed  CAS  Google Scholar 

  • Skaliora I, Adams R, Blakemore C (2000) Morphology and growth patterns of devel-oping thalamocortical axons. J Neurosci 20:3650–3662

    PubMed  CAS  Google Scholar 

  • Song HJ, Poo MM (2001) The cell biology of neuronal navigation. Nat Cell BioI 3:EB1–EB8

    Google Scholar 

  • Steup A, Ninnemann 0, Savaskan NE, Nitsch R, Piischel AW, Skutella T (1999) Sema-phorin D acts as a repulsive factor for entorhinal and hippocampal neurons. Eur J Neurosci 11:729–734

    PubMed  CAS  Google Scholar 

  • Tamagnone L, Comoglio PM (2000) Signaling by semaphorin receptors: cell guidance and beyond. Trends Cell Bioi 10:377–383

    CAS  Google Scholar 

  • Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T (1997) Dis-ruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19:519–530

    PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    PubMed  CAS  Google Scholar 

  • Tuttle R, Nakagawa Y, Johnson JE, O’Leary DDM (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-I-deficient mice. Develop-ment 126:1903–1916

    CAS  Google Scholar 

  • Varela-Echavarria A, Tucker A, Piischel AW, Guthrie S (1997) Motor axon subpopula-tions respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 18:193–207

    PubMed  CAS  Google Scholar 

  • Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M (1999) Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96:771–784

    PubMed  CAS  Google Scholar 

  • Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chedotal A, Ghosh A (2002) Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33:47–61

    PubMed  CAS  Google Scholar 

  • Wolfer DP, Henehan-Beatty A, Stoeckli ET, Sonderegger P, Lipp HP (1994) Distribution of TAG-l/axonin-1 in fibre tracts and migratory streams of the developing mouse nervous system. J Comp Neurol 345:1–32

    PubMed  CAS  Google Scholar 

  • Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400:331–336

    PubMed  CAS  Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DDM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoat-tractant netrin-l. Neuron 24:607–622

    PubMed  CAS  Google Scholar 

  • Yokoyama N, Romero MI, Cowan CA, Galvan P, Helmbacher F, Charnay P, Parada LF, Henkemeyer M (2001) Forward signaling mediated by ephrin-B3 prevents con-tralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29:85–97

    PubMed  CAS  Google Scholar 

  • Yuan W, Zhou L, Chen JH, WU JY, Rao Y, Ornitz DM (1999) The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogen-esis and axon guidance. Dev Bioi 212:290–306

    CAS  Google Scholar 

  • Zhang JH, Cerretti DP, Yu T, Flanagan JG, Zhou R (1996) Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J Neurosci 16:7182–7192

    PubMed  CAS  Google Scholar 

  • Zhou L, White A, Lentz SI, Wright DE, Fisher DA, Snider WD (1997) Cloning and expres-sion of a novel murine semaphorin with structure similarity to insect semaphorin1. Mol Cell Neurosci 9:26–41

    PubMed  CAS  Google Scholar 

  • Zhou C, Qiu Y, Pereira FA, Crair MC, Tsai SY, Tsai MJ (1999) The nuclear orphan recep-tor COUP-TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24:847–859

    PubMed  CAS  Google Scholar 

  • Zhu Y, Li HS, Zhou L, Wu JY, Rao Y (1999) Cellular and molecular guidance of GABA-ergic neuronal migration from the striatum to the neocortex. Neuron 23:473–485

    PubMed  CAS  Google Scholar 

  • Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102:363–375

    PubMed  CAS  Google Scholar 

  • Zou Z, Horowitz LF, Montmayeur JP, Snapper S, Buck LB (2001) Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414:173–179

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Judaš, M., Milošević, N.J., Rašin, MR., Heffer-Lauc, M., Kostović, I. (2003). Complex Patterns and Simple Architects: Molecular Guidance Cues for Developing Axonal Pathways in the Telencephalon. In: Kostović, I. (eds) Guidance Cues in the Developing Brain. Progress in Molecular and Subcellular Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55557-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55557-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62426-1

  • Online ISBN: 978-3-642-55557-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics