Skip to main content

Photon-Force Controlled Molecular Assembling in Solution

  • Chapter
  • 493 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Laser light can be focused to a small spot of the order of the wavelength of the light, which gives lasers the potential to be used for a variety of chemical and physical applications in the micrometer to submicrometer domains. Spectroscopic characterization and studies of molecular photochemical and photophysical processes at these dimensions under microscopes have become routine in recent years [13]. Another characteristic of a focused laser beam is the “photon force”, which was originally proposed by Newton, treated theoretically by Maxwell, and confirmed experimentally by Lebedev [4], and has been traditionally called “radiation pressure”. The photon force is generated by changes in photon momentum when light is refracted at the interface between a medium and a μm-sized particle with different refractive indices [59]. This force enables noncontact and nondestructive manipulation of microparticles in solution; a phenomenon developed recently in the “laser trapping” technique. The photon force has received much attention in the field of optics and was first applied for trapping μm-sized particles by Ashkin [5]. In his series of studies the phenomena have been clarified and its application as a laser trapping method has been widely explored in optical measurements of microscopic systems. The potential of laser trapping was demonstrated particularly in investigations of biological systems and also the superiority of using near-infrared (IR) laser light (1064 nm) instead of a visible beam (514.5nm) was confirmed [9]. The three-dimensional micromanipulation of microparticles with the use of near-IR laser trapping was demonstrated more recently by us [10] and extended to particles with high reflection coefficient or with refractive index lower than that of the surrounding medium [11]. Thus this technique is now recognized as having a potential in physical chemistry. The spatial pattern formation, size selection, and assembling of microparticles in solution were achieved in noncontact mode [1215]. Also studies of chemical processes like laser ablation [16] as well as the spectroscopic investigations of manipulated individual microparticles [1721] were made possible in small domains. More sophisticated output is work on the lasing of a single microparticle and its application to intracavity spectroscopy [22].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Masuhara, F.C. De Schryver, N. Kitamura, N. Tamai (Ed.): Microchemistry: Spectroscopy and Chemistry in Small Domains. (Elsevier, North Holland, 1994)

    Google Scholar 

  2. X.F. Wang, B. Herman: Fluorescence Imaging Spectroscopy and Microscopy (John Wiley&Sons, New York 1996)

    Google Scholar 

  3. H. Masuhara, F.C. De Schryver: Organic Mesoscopic Chemistry (Blackwell Science, Oxford 1999)

    Google Scholar 

  4. P.N. Lebedev: Ann. der Phys. 6, 433 (1901)

    Article  Google Scholar 

  5. A. Ashkin: Phys. Rev. Lett. 24, 156 (1970)

    Article  CAS  Google Scholar 

  6. A. Ashkin, J.M. Dziedzic: Appl. Phys. Lett. 19, 283 (1971)

    Article  Google Scholar 

  7. A. Ashkin: Science 210, 1081 (1980)

    Article  CAS  Google Scholar 

  8. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Opt. Lett. 11, 288 (1986)

    Article  CAS  Google Scholar 

  9. A. Ashkin, J.M. Dziedzic, T. Yamane: Nature 330, 769 (1987)

    Article  CAS  Google Scholar 

  10. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara: Chem. Lett. 1479 (1990)

    Google Scholar 

  11. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara: Appl. Phys. Lett. 60, 807 (1992)

    Article  CAS  Google Scholar 

  12. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara: Chem. Lett. 469 (1991)

    Google Scholar 

  13. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara: Jpn. J. Appl. Phys. 30, 907 (1991)

    Article  Google Scholar 

  14. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara: Opt. Lett. 16, 1463 (1991)

    Article  CAS  Google Scholar 

  15. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara: Macromolecules 26, 282 (1993)

    Article  CAS  Google Scholar 

  16. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara: J. Appl. Phys. 70, 3829 (1991)

    Article  CAS  Google Scholar 

  17. K. Sasaki, M. Koshioka, H. Masuhara: Appl. Spectr. 45, 1041 (1991)

    Article  CAS  Google Scholar 

  18. H. Masuhara: J. Photochem. Photobiol. A: Chem. 62, 397 (1992)

    Article  CAS  Google Scholar 

  19. H. Masuhara, N. Kitamura, H. Misawa, K. Sasaki, M. Koshioka: J. Photochem. Photobiol. A: Chem. 65, 235 (1992)

    Article  CAS  Google Scholar 

  20. K. Sasaki, K. Kamada, H. Masuhara: Jpn. J. Appl. Phys. 33, 1413 (1994)

    Article  Google Scholar 

  21. H. Masuhara, K. Sasaki: Analytica Chimica Acta 299, 309 (1995)

    Article  CAS  Google Scholar 

  22. K. Kamada, K. Sasaki, H. Misawa, N. Kitamura, H. Masuhara: Chem. Phys. Lett. 210, 89 (1993)

    Article  CAS  Google Scholar 

  23. W.D. Phillips, J.V. Prodan, H.J. Metcalf: J. Opt. Soc. Am. B. 2, 1751 (1985)

    Article  CAS  Google Scholar 

  24. G.M. Gallatin, P.L. Gould: J. Opt. Soc. Am. B. 8, 502 (1991)

    Article  CAS  Google Scholar 

  25. A. Landragin, J.Y. Courtois, G. Labeyrie, N. Vansteenkiste, C.I. Westbrook, A. Aspect: Phys. Rev. Lett. 77, 1464 (1996)

    Article  CAS  Google Scholar 

  26. T. Seideman: J. Chem. Phys. 106, 2881 (1997)

    Article  CAS  Google Scholar 

  27. T. Seideman: Phys. Rev. A. 56, R17 (1997)

    Article  CAS  Google Scholar 

  28. T. Seideman: J. Chem. Phys. 107, 10420 (1997)

    Article  CAS  Google Scholar 

  29. H. Sasaki, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R.W. Yip, C. Ellert, E. Constant, P.B. Corkum: Phys. Rev. A. 57, 2794 (1998)

    Article  Google Scholar 

  30. Y.R. Shen: The Principles of Nonlinear Optics (John Wiley&Sons, New York 1984)

    Google Scholar 

  31. P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara: J. Phys. Chem. B. 101, 5900 (1997)

    Article  CAS  Google Scholar 

  32. P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara: J. Phys. Chem. B. 102, 1896 (1998)

    Article  CAS  Google Scholar 

  33. Y. Morishima, Y. Tominaga, M. Kamachi, T. Okada, Y. Hirata, N. Mataga: J. Phys. Chem. 95, 6027 (1991)

    Article  CAS  Google Scholar 

  34. Y. Morishima: ‘Unimolecular Micelles of Hydrophobically Modified Polyelectrolytes’. In: Solvents and Self-Organization of Polymers, ed. by S.E. Webber, P. Munk, Z. Tuzar (Kluwer Academic Publishers, Netherlands 1996) pp. 331–358

    Chapter  Google Scholar 

  35. J. Hotta, K. Sasaki, H. Masuhara, Y. Morishima: J. Phys. Chem. B 102, 7687 (1998)

    Article  CAS  Google Scholar 

  36. M. Heskins, J.E. Guillet: J. Macromol. Sci. Chem. A2, 1441 (1968)

    Google Scholar 

  37. M. Meewes, J. Ricka, M. de Silva, R. Nyffenegger, Th. Binkert: Macromolecules 24, 5811 (1991)

    Article  CAS  Google Scholar 

  38. F.M. Winnik, H. Ringsdorf, J. Venzmer: Langmuir 7, 905 (1991)

    Article  CAS  Google Scholar 

  39. H.G. Schild, D.A. Tirrell: Langmuir 7, 665 (1991)

    Article  CAS  Google Scholar 

  40. S. Fujishige, K. Kubota, I. Ando: J. Phys. Chem. 93, 3311 (1989)

    Article  CAS  Google Scholar 

  41. H. Inomata, Y. Yagi, K. Otake, M. Konno: Macromolecules 22, 3494 (1989)

    Article  CAS  Google Scholar 

  42. D.W. Urry: Angew. Chem. Int. Ed. Engl. 32, 819 (1993)

    Article  Google Scholar 

  43. H.G. Schild, D.A. Tirrell: J. Phys. Chem. 94, 4352 (1990)

    Article  CAS  Google Scholar 

  44. M. Ishikawa, H. Misawa, N. Kitamura, H. Masuhara: Chem. Lett. 481 (1993

    Google Scholar 

  45. M. Ishikawa, H. Misawa, N. Kitamura, R. Fujisawa, H. Masuhara: Bull. Chem. Soc. Jpn. 69, 59 (1996)

    Article  CAS  Google Scholar 

  46. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, K. Iwai: Langmuir. 13, 414 (1997)

    Article  CAS  Google Scholar 

  47. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, H. Faes, F.C. De Schryver: Mol. Cryst. Liq. Cryst. 283, 165 (1996)

    Article  CAS  Google Scholar 

  48. T.A. Smith, J. Hotta, K. Sasaki, H. Masuahra, Y. Itoh: J. Phys. Chem. B 103, 1660 (1999)

    Article  CAS  Google Scholar 

  49. K. Svoboda, S.M. Block: Opt. Lett. 19, 930 (1994)

    Article  CAS  Google Scholar 

  50. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, T. Taniguchi, T. Miyashita: J. Am. Chem. Soc. 119, 2741 (1997)

    Article  CAS  Google Scholar 

  51. J. Hotta, K. Sasaki, H. Masuhara: J. Am. Chem. Soc. 118, 11968 (1996)

    Article  CAS  Google Scholar 

  52. S. Masuo, H. Yoshikawa, T. Asahi, H. Masuhara, T. Sato, D.-L. Jiang, T. Aida: J. Phys. Chem. B 106, 905 (2002)

    Article  CAS  Google Scholar 

  53. T. Sato, D.-L. Jiang, T. Aida: J. Am. Chem. Soc. 121, 10658 (1999)

    Article  CAS  Google Scholar 

  54. S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, T.M. Fischer: J. Phys. Chem. B 105, 182 (2001)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masuhara, H. (2003). Photon-Force Controlled Molecular Assembling in Solution. In: Masuhara, H., Nakanishi, H., Sasaki, K. (eds) Single Organic Nanoparticles. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55545-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55545-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62429-2

  • Online ISBN: 978-3-642-55545-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics